Författare
Karin Hjerpe
Per Olsson
Hillevi Eriksson

Projektleade
Karin Hjerpe

Projektgrupp
Hillevi Eriksson
Anna Wallstedt
Stefan Anderson
Hampus Holmström
Anders Pollock
Christer Kalén
Per Olsson
Johan Hagström

Fotograf
© Per Olsson

Papper
Colotech+

Tryck
SJV, Jönköping

Upplaga
120 ex

ISSN 1100-0295
BEST NR 1802

Skogsstyrelsens förlag
551 83 Jönköping
10.1 Är försurningsläget och återhämtningshastigheten i skogsmark sådant att det finns ett behov av åtgärder? ...............................................................58
10.2 Ger skogsmarkskalkning önskad effekt på mark- och vattenkemin?.......59
10.3 Är skogsmarkskalkning en kostnadseffektiv åtgärd?.............................61
10.4 Kan kalkningen ha negativa bieffekter som gör åtgärden olämplig?.....62
10.5 Hur kan skogsmarkskalkning genomföras praktiskt? .............................63

11 Litteratur/källförteckning........................................................................65
Förord


Ett av projektets syften var att ta fram ett underlag för ställningstagande om huruvida skogsmarkskalkning är en metod som bör användas, som ett komplement till ytvatten- och våtmarkskalkning, för att påskynda återhämtning från antropogen försurning i mark, mindre sjöar och vattendrag i sydvästra Sverige. Denna rapport utgör en sammanställning av de resultater som tagits fram i studier som finansierats inom projektet, de erfarenheter som vunnits genom den praktiska spridningen och de slutsatser som dragits under diskussioner med den expertgrupp som tillsattes. Tanken är därmed att rapporten ska utgöra det efterfrågade beslutsunderlaget.

Rapporten ingår i Skogsstyrelsens rapportserie där författarna står för innehåll och slutsatser.

Jönköping 2008

_______________________________
Karin Hjerpe
Projektledare
1 Bakgrund

1.1 Kort om försurning


1.2 Klassificering av försurningsstatus

Bedömningen av om en sjö är försurad eller inte baseras i uppföljningen av miljökvalitetsmålet ”Bara naturlig försurning” på pH-förändring (Naturvårdsverket, 2007). Om pH sjunkit med över 0,4 pH-enheter jämfört med ett förindustriellt referenstillstånd så anses sjön vara antropogent försurad (försurad av mänsklig aktivitet). Förändringar i pH över tid kan modelleras med hjälp av MAGIC, där
tillståndet år 1860 representerar det förindustriella referenstillståndet (för mer information, se hemsida för IVL Svenska Miljöinstitutet AB: www.ivl.se).

Bedömningen av om skogsmark är försurad eller inte är mer komplicerad. Det finns ett antal buffrande system i marken som på olika sätt förbrukar de tillförda vätejonerna och markens pH sjunker olika snabbt beroende på vilket buffringsområde marken befinner sig i. Initialt buffrar främst baskatjoner i marken. De joner som kallas för baskatjoner är natrium (Na⁺), kalium (K⁺), kalcium (Ca²⁺) och magnesium (Mg²⁺). Tillförda vätejoner tränger bort baskatjonerna från markens utbytesystem vilket leder till att baskatjonerna hamnar i marklösningen och utläkas. Ju surare marken är desto mindre baskatjoner finns därför. Vid låga pH-värden utgörs ett viktigt buffertsystemet av aluminiumhydroxid:

$$\text{Al(OH)}_3 + 3 \text{H}^+ \leftrightarrow \text{Al}^{3+} + 3 \text{H}_2\text{O}$$


Tabell 1. Tillståndsklasser för bedömning av skogsmarkens surhetsgrad enligt bedömningsgrunderna (Naturvårdsverket, 1999). Värdena avser prov taget i de översta 5 cm av markens B-horison.

<table>
<thead>
<tr>
<th>Klass</th>
<th>Surhetsgrad</th>
<th>pH (H₂O)</th>
<th>Effektiv basmättadgrad (%)</th>
<th>Utbytbart aluminium (mmol per kg torrsubstans)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Låg</td>
<td>≥5,5</td>
<td>≥50</td>
<td>≤3</td>
</tr>
<tr>
<td>3</td>
<td>Måttlig</td>
<td>4,4-5,5</td>
<td>6-10</td>
<td>10-12</td>
</tr>
<tr>
<td>4</td>
<td>Hög</td>
<td>4,0-4,4</td>
<td>&lt;6</td>
<td>≥12</td>
</tr>
<tr>
<td>5</td>
<td>Mycket hög</td>
<td>&lt;4,0</td>
<td>≥12</td>
<td></td>
</tr>
</tbody>
</table>

1.3 Orsaker till försurning

Försurning av mark och vatten har i första hand orsakats av surt nedfall i form av svavel och kväve. Efter att problemet med försurning uppmärksamhades har en kedja av händelser lett till att utsläppen i Europa minskat. Sedan 1990 har utsläppen av svaveldioxid reducerats med runt 65 %, kväveoxid med 30 % och ammniak med 22 % (Naturvårdsverket, 2007). Utsläppsreduktionerna återspeglas även i depositionsmätningar och svaveldeposition har minskat med 65 % mellan 1990 och 2003 och kvävenedfallet under samma period med 29 % (Naturvårdsverket, 2007). Eftersom nedfallet av svavel minskat snabbare än kvävenedfallet har kväve fått större vikt för försurningen av mark, både genom direkta försurningseffekter och genom att trädtillväxten kan påverkas.


Även brukande av marken och uttag av biomassa påverkar markens försurningsstatus. I skog leder trädens näringsupptag till en anrikning av sura ämnen i marken och en anrikning av basiska ämnen i trädet. Dessutom är baskatjonerna (förutom natrium) näringsämnen som träden behöver. När biomassan sedan förs bort i samband med skörd förs därmed också baskatjoner och kalkverkan bort från systemet (för mer information om skogsbruks försurande verkan se Skyllberg m.fl., 2001 och Akselsson m.fl., 2007). Detta innebär att skogsbruks kan minska möjligheterna till naturlig återhämtning.

1.4 Åtgärder mot försurning

I Naturvårdsverkets regi har ytvatten i form av sjöar och vattendrag kalkats i syfte att bevara eller återskapa förutsättningarna för vattenlevande organismer i väntan på att försurningen minskar. Kalk har spridits i sjöar med hjälp av helikopter eller

En alternativ metod för att åtgärda försurningen i ytvtvatten kan vara att kalka fastmarken i avrinningsområdena. Om fastmarken återgår till ett lägre surhetstillstånd möjliggörs även en lägre surhet på avrinningsvattnet. Fastmarkskalkning är tänkt som en långsiktig åtgärd och det tar tid innan effekten på ytvtvatten uppkommer. Teoretiskt sett kan dock återhämtningen av marken förr eller senare bli fullgod, vilket innebär att våtmarks- och ytvtvattenkalkningen på sikt kan fasas ut.

Inom fastmarkskalkning arbetar man inte med målvärden, exempelvis att marken ska ha ett pH ≥ 5,5 eller en effektiv basmättnadgrad ≥50 % eller att avrinningsvattnet ska ha ett visst pH. Istället har givan räknats ut så att den skulle kunna ge positiva effekter på avrinningsvatten utan risk för skador på flora och fauna samt näringsutläckning (Skogsstyrelsen, 2001a).

1.5 Fastmarksåtgärder och dess syften

Eftersom produktiv skogsmark utgör drygt hälften (52 %) av Sveriges landareal är fastmarksåtgärder mot försurningen en viktig fråga för Skogsstyrelsen. Skogsbruk kan också bidra till försurningen (se stycke 1.3) men Skogsstyrelsen anser att olika åtgärder bör användas mot olika försurningsorsaker (Skogsstyrelsen, 2001a). I den fördjupade utvärderingen av miljökvalitetsmålet ”Bara naturlig försurning” som genomförts finns ett förslag på nytt delmål om skogsbrukets försurning. I detta anges att skogsbruks försurningspåverkan i försurade områden inte ska överstiga det som kompenseras via naturliga processer (Naturvårdsverket, 2007). Generellt anses vittringen kunna kompensera för uttag av stamved. Även om det finns undantag från denna regel anses risken för att en nettoförsurning uppkommer betydligt större om även grenar och toppar tas ut i samband med avverkning. Skogsstyrelsen har därför rekommendationer som anger att uttag av grenar och toppar bör kompenseras genom askåterföring (Skogsstyrelsen, 2001b). Detta innebär att skogsbuket bör ta ansvar för den försurning som orsakas av brukande av skogsmarken. Däremot bör eventuella åtgärder mot den försurning som orsakats av surt nedfall finansieras med statliga medel (Skogsstyrelsen, 2001a).

Skogsmarkskalkning har debatterats under en längre period och Skogsstyrelsen har bedrivit försöksverksamhet med skogsmarkskalkning sedan början av 90-talet (Skogsstyrelsen, 2001a; Mellblom, 2006). Då för drygt 15 år sedan, var syftet i första hand att förbättra skogens hälsotillstånd (den antropogena försurning hade lett till förluster av baskatjoner i marken och det fanns en oro för att näringsobalanser skulle orsaka kronutglesning och träddöd). År 1999 finansierade Skogs-
styrelsen en miljökonsekvensbeskrivning av kalkning och vitalisering (Johansson m.fl., 1999) och 2001 gjordes en sammanställning av befintlig kunskap och ett åtgärdsprogram mot markförsurning utarbetades (Skogsstyrelsen, 2001a). Det fanns då inte några empiriska data som tydde på att trädens tillväxt och vitalitet skulle ha påverkats negativt av markförsurningen i Sverige och dessutom hade utsläppen av försurande ämnen minskat sedan början av 90-talet (se stycke 1.3). Därmed hade det förmodade behovet av skogsmarkskalkning i syfte att minska risken för omfattande skador på skogen försvunnit. Kvarstod gjorde dock problemet med försurning av ytvatten och att skogsmarken bidrog med surt vatten rikt på oorganiskt aluminium. Den återhämtning av skogsmarken som påbörjats ansågs vara långsamt och otillräckligt och därmed antogs de negativa effekterna på den biologiska mångfalden i vatten bestå under en lång tid. Med anledning av detta ansåg Skogsstyrelsen att det var angeläget att åtgärda skogsmarker med ofullständig naturlig återhämtning vilka framförallt fanns i sydvästra Sverige (Skogsstyrelsen, 2001a). Målet för åtgärden uttrycktes:

- Skogsmarkens läckage av aluminium och vätejoner till yt- och grundvatten skall långsiktigt minska till nivåer som inte ger upphov till skador på den biologiska mångfalden i vattenekosystemet.

Sedan åtgärdsprogrammet skrevs har arbete pågått med att definiera de nivåer av sura joner som kan ge upphov till skador på den biologiska mångfalden i vattenekosystemet. Olika kemiska surhetsindikatorer har jämförts med avseende på koppling till biologisk effekt och den slutsats som drogs var att pH var den faktor som visade störst samvariation med biota i sjöar och vattendrag (Fölster, 2007). Antropogen försurning av ytvatten baseras i miljökvalitetsmålet "Bara naturlig försurning" på förändring i pH och gränsen går vid en pH-sänkning på 0,4 enheter (se stycke 1.2). Vidare har en klassning av halterna oorganiskt aluminium genomförts och i denna räknas halter i ytvatten på 50-100 μg per liter som höga, halter på 100-150 μg per liter som mycket höga och halter >150 μg per liter som extremt höga (Fölster, 2007). De skador som förhöjda genomsnittshalter av oorganiskt aluminium kan medföra är korrelerade med haltökningen. Bottenfaunan påverkas vid halter över 20 μg per liter och detta är också den lägsta kritiska nivån för påverkan på fisk (Fölster, 2007). Vid halter över 150 μg per liter har undersökningar visat på akuta toxiska effekter (Fölster, 2007). Liksom pH varierar halten oorganiskt aluminium naturligt i viss mån och det är enbart antropogen orsakade haltökningar som bör motverkas.

användas, som ett komplement till ytvatten- och våtmarkskalkning, för att på-
skynda återhämtning från antropogen försurning i sydvästra Sverige (se stycke
2.1).

När syftet med skogsmarkskalkning diskuteras i denna rapport handlar det om att
minska sur avrinning från skogsmark till ytvatten. Dock används två olika ambi-
tionsnivåer. Den första innebär en icke preciserad förbättring medan den andra
innebär en sänkning av koncentrationerna av oorganiskt aluminium under skadli-
ga nivåer (vilket i rapporten definieras som 50 µg per liter).

1.6 Syftet med rapporten

En ny kalkningsplan ska tas fram till år 2010. Inför denna bör man ha tagit ställ-
ning till om huruvida ytvatten- och våtmarkskalkning bör kompletteras med fast-
markskalkning. De viktigaste frågorna som bör ha besvarats innan beslut fattas
om en eventuell storskalig skogsmarkskalkning kan delas in i fem olika områden:

1. Är försurningsläget och återhämtningshastigheten i skogsmarken sådant
   att det finns ett behov av åtgärder?
2. Ger skogsmarkskalkning önskad effekt på mark- och vattenkemin?
3. Är skogsmarkskalkning en kostnadseffektiv åtgärd?
4. Kan kalkningen ha negativa bieffekter som gör åtgärden olämplig?
5. Hur kan skogsmarkskalkning genomföras praktiskt?

För att få mer kunskap om detta finansierade Naturvårdsverket ett projekt som
drivits i Skogsstyrelsens regi under år 2005-2007 (se stycke 2.1). Syftet med
denna rapport är att presentera resultaten från försöksperioden och samla kun-
skapsunderlag för att besvara de olika frågeställningarna.
2 Projektbeskrivning

2.1 Projektbakgrund


Genomförandet av åtgärdsprogrammet föreslogs omfatta en förberedelsefas på tre år och en påföljande åtgärdsfas på omkring tio år. Förberedelsefasen gick i åtgärdsprogrammet ut på att utreda och besvara de kvarstående frågeställningarna som hade identifierats. Även en relativt omfattande praktisk verksamhet var tänkt att bedrivs under förberedelsefasen för att utveckla verktyg för det praktiska genomförandet.


och namnet ändrades till utvecklingsfasen. Den projektplan som man enades om angav två övergripande syften med projektet:

- Ge ett underlag för ställningstagande om skogsmarkskalkning är en metod som bör användas, som ett komplement till ytvatten- och våtmarkskalkning, för att påskynda återhämtning från antropogen försurning i mark, mindre sjöar och vattendrag i sydvästra Sverige.
- Ge ökad kunskap och rekommendationer om anpassade skogsskötselmetoder för uthålligt brukande av skogsmarken.

2.2 Vägar för att ta fram kunskapsunderlag

För att få fram bästa möjliga kunskapsunderlag för bedömning av huruvida skogsmarkskalkning bör användas som en storskalig åtgärd i syfte att påskynda återhämtningen från antropogen försurning har projektet tillsatt en expertgrupp, kalkat ett antal områden, sammanställt resultat från tidigare studier samt finansierat nya studier.

2.2.1 Expertgrupp

En expertgrupp tillsattes inom Movib i syfte att diskutera kunskapsläget för skogsmarkskalkning. Gruppen, som bestod av tretton personer (Tabell 2), bereddes möjlighet att ge synpunkter på arbetet inom Movib men även på hur en eventuella framtida storskalig kalkningsverksamhet skulle kunna bedrivas.

<table>
<thead>
<tr>
<th>Namn</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulf Sikström</td>
<td>Skogforsk</td>
</tr>
<tr>
<td>Lars Högbom</td>
<td>Skogforsk</td>
</tr>
<tr>
<td>Fredrik Nilsson</td>
<td>Länsstyrelsen Västra Götaland</td>
</tr>
<tr>
<td>Anders Dahlgberg</td>
<td>Artdatabanken</td>
</tr>
<tr>
<td>Tomas Hallingbäck</td>
<td>Artdatabanken</td>
</tr>
<tr>
<td>Hjalmar Laudon</td>
<td>Umeå universitet</td>
</tr>
<tr>
<td>Lars-Ove Lång</td>
<td>SGU</td>
</tr>
<tr>
<td>Olle Westling och Therese Zetterberg</td>
<td>IVL</td>
</tr>
<tr>
<td>Stefan Löfgren</td>
<td>SLU</td>
</tr>
<tr>
<td>Ulf Skyllberg</td>
<td>SLU</td>
</tr>
<tr>
<td>Stefan Anderson</td>
<td>Skogssstyrelsen</td>
</tr>
<tr>
<td>Gunnar Thelin</td>
<td>Lunds tekniska högskola</td>
</tr>
<tr>
<td>Ulla Bertills</td>
<td>Naturvårdsverket</td>
</tr>
</tbody>
</table>

2.2.2 Praktisk kalkning

Inom Movib kalkades totalt 4 500 hektar. Kalkningen genomfördes i syfte att få bättre kunskap om problem och kostnader i samband med en mer storskalig spridning. Vidare så genomfördes flera av de studier som finansierades i anslutning till de nya kalkade områdena. De nya kalkade områdena presenteras mer detaljerat i en annan rapport (Hjerpe m.fl., 2008).
2.2.3 Erfarenhet från tidigare studier
Inom Movib sammanställdes den information som tagits fram i samband med tidigare studier om kalkning. En hel del av de försök som bidragit till den ökade kunskapen om kalkning har genomförts inom ett fåtal kalkade områden.

Gamla kalkningsförsök

Parcellförsök


SKOKAL-områden
I början av 1990-talet spreds kalk, 3 ton per hektar, i försökssyfte i Skogsstyrelsens regi. Områdena brukar ibland refereras till som SKOKAL-områden och kommer härefter att kallas så även i denna rapport. Ett flertal rapporter har getts ut där effekten av kalkningen presenteras (Larsson och Westling, 1997; Akselsson m.fl., 1998; Uggla m.fl., 2003). Mer information om de olika områdena återfinns i
dessa rapporter. Kort så sker effektuppföljning i fem olika län: Skåne, tidigare Kristianstads (L), Blekinge (K), Halland (N), Kronoberg (G) och Västra Götaland, tidigare Älvsborgs (P) och Skaraborgs (R) samt Göteborg och Bohus län (O), och områdena har getts namn efter länskoder. Sedan försöktets början har vissa områden utgått av olika skäl. De som ingick i den senaste effektuppföljningen (Löfgren m.fl., 2008b) återfinns i Tabell 3. I anslutning till fem av områdena finns även referensområden. Endast ett fåtal mätningar genomfördes dock före kalkningen och det går därför inte att med säkerhet säga att dessa referensområden speglar hur de kalkade områdena skulle ha varit om de inte kalkats. Inom områdena finns permanenta provytor för olika typer av undersökningar, vanligtvis 30 x 30 m stora (Larsson och Westling, 1997). Provytorna används för registrering av markkemi och skogliga effekter av kalkningen, främst studier av tillväxt och kronutglesning. Inom dessa ytor är även undertryckslysometrar för markvattenprovtagning placerade.

I SKOKAL-områdena har markkemi (Uggla m.fl., 2003), markvattenkemi (Akselsson m.fl., 1998) och ytvattenkemi (Larsson och Westling, 1997) följts upp och i vissa av dem (G1, G2, L1, L2, P2, R2, G2R, L2R, P2R och R2R) också bottenfauna och påväxtalger (Larsson m.fl., 1999). Även effekterna på trädtillväxt och –vitalitet har studerats (Anderson och Hildingsson, 2004).

<table>
<thead>
<tr>
<th>Kalkade områden</th>
<th>Referensområden</th>
<th>Lokal</th>
<th>Kalkad</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>Furuby</td>
<td>apr - maj 1991</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>G2R</td>
<td>Asa</td>
<td>aug 1991</td>
</tr>
<tr>
<td>K2</td>
<td>Hallaryd</td>
<td>aug - okt 1991</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Skeinge</td>
<td>okt 1990- jan 1991</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>L2R</td>
<td>Östad</td>
<td>aug - okt 1991</td>
</tr>
<tr>
<td>N1</td>
<td>Frösilda</td>
<td>apr 1991</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>O2R</td>
<td>Munkedal</td>
<td>aug 1991</td>
</tr>
<tr>
<td>P1</td>
<td>Örby</td>
<td>apr 1992</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>P2R</td>
<td>Bäckefors</td>
<td>okt nov 1991</td>
</tr>
<tr>
<td>R2</td>
<td>R2R</td>
<td>Mullsjö</td>
<td>nov 1991 – apr 1992</td>
</tr>
</tbody>
</table>

Dosförsök

Nissadalen
Tolv delavrinningsområden i Nissadalen har ingått i ett försök där olika kombinationer av kalk och aska tillförts (Larsson m.fl., 2003b). Åtgärderna genomfördes under hösten 1998 och våren 1999. Vissa delavrinningsområden lämnades obehändade och utgorde referenser. I andra behandlades endast fastmarken genom en tillförsel av både kalk och aska, en så kallad grunddos med 4 ton kalk + 2 ton aska per hektar. I övriga områden tillfördes grunddosen kalk och aska på både fast- och våtmark och i vissa av dessa tillfördes också en extra dos (6 eller 12 ton
kalk på utströmningsområdet. Detta försöksområde kommer häだneretter att om-
nämnas som Nissadalen. I området har diverse studier genomförts (Wickström
m.fl., 2003), bland annat har ytvankeimi följts upp (Zetterberg, 2008). Även
bottenfaunan har főııts upp årligen i två bäckar, en som ligger i ett avrinningsom-
råde som behandlats med kalk och aska och en som ligger i ett obehändlat område
(Ekologgruppen 1998; 2000; 2001; 2003 och 2004). Också effekter på vegetatio-
nen, både direkter i samband med kalkningen och mer långsikta, har studerats
(Aronsson, 2003).

2.2.4 Nya studier
Inom Movib finansierades ett antal studier. Dessa redovisas i enskilda rapporter,
de flesta i Skogsstyrelsens rapportserie men vissa i IVLs rapportserie. I denna
sammanställning presenteras endast de studier som rör kalkning medan de som rör
skogsskru ur andra aspekter, exempelvis kväve, läckage av kvicksilver från mark-
skador eller askåterföring, presenteras i en annan rapport (Hjerpe och Olsson,
2008).

Försurningsstatusen i mindre skogsbäckar
Koncentrationen av oorganiskt aluminium mättes i skogsbäckar över Sverige
Löfgren m.fl. (2008a). Mätningar i befintliga övervaknings- eller forskningspro-
gram kompletterades med utökad provtagning i två intilliggande bäcker med
mindre eller större avrinningsområden under vårflo, basflo samt två höstflo-
den. Vattenproverna, som analyserades med avseende på baskemi och oorganiskt
aluminium, samlades in från 114 vattendrag. De flesta vattendragen låg i södra
Sverige men även områden i norra Sverige ingick i studien. Detta för att mer på-
tagliga graderter skulle erhållas för exempelvis deposition och klimat.

Halterna av oorganiskt aluminium relaterades till andra parametrar, så som andel
myrmark, trädslag, trädålder och virkesförråd, i ett försök att finna egenskaper
som kan användas för att identifiera avrinningsområden där risken är stor för att
halterna är höga (Löfgren mf.l., 2008a).

Effekter av kalkning på mark- och vattenkemi samt bottenfauna
Fortsatt uppföljning av SKOKAL-områden och Nissadalen
I SKOKAL-områdena och Nissadalen genomfördes fortsatt uppföljning av ytvan-
tekemi inom Movib. Även nya vattenkemidata från SKOKAL-områdena ingick i
den fördjupade utvärderingen av SKOKAL-data (se nedan) och redovisas där-
med i Löfgren m.fl. (2008b). Resultaten från Nissadalen redovisas i Westling och
Nissadalen låg inom det område som drabbades av stormen Gudrun i januari
2005. Inom Movib genomfördes en inventering av skogstillståndet för att se i hur
stor utsträckning områdena var stormskadade (Erlandsson och Anderson, 2005).
Resultaten från inventeringen har utgjort ett underlag till en särskild delstudie där
effekter av stormen på vattenkvalitet i Nissadalen studerats (Zetterberg, 2008).

Fördjupad utvärdering av SKOKAL-data
En fördjupad utvärdering av skogsmarkskalkningens effekter på kemin i mark,
markvatten, grundvatten och ytvanen från SKOKAL-områdena genomfördes
inom Movib (Löfgren m.fl., 2008b). Ett syfte med den fördjupade utvärdering var

Ett annat syfte med den fördjupade utvärderingen var att undersöka om vattenkemin i bäckar i kalkade områden skiljer sig från den som kan ses i bäckar som inte påverkats av kalkning (Löfgren m.fl., 2008b). Ett tredje syfte var att med hjälp av modellering analysera huruvida skogsmarkskalkning i kombination med framtida utsläppsminskningar kan förväntas påverka bäckarnas försurningssstatus i sådan omfattning att halterna av oorganiskt aluminium i bäckvattnet kommer att understiga 50 µg per liter (vilket är det gränsvärde som satts för hög halt, se stycke 1.5). Markvattenkemiska tidsserier utvärderades också med samma syfte.

Transektstudie i SKOKAL-områdena
En transektstudie genomfördes inom projektet i vilken grundvatten- och markkemin analyserades i sluttningar inom fyra av SKOKAL-områdena (G2, L2, O2 och R2) (Löfgren m.fl., 2008b). Syftet var att bestämma hur stor inverkan kalkningen har på det ytliga grundvattnets kvalitet idag samt om en större effekt är att vänta i framtiden.


Områdeskaraktäriskt i SKOKAL-områdena
En studie av områdesfaktorer genomfördes i nio SKOKAL-områden (G2, K2, L1, L2, N1, O2, P1, P2 och R2). Inom områdena har vattenkemin följts upp och i september, oktober och november 2007 utökades provtagningen med en eller två utvalda provpunkter utmed huvudbäcken eller i tillrinnande bäckar inom avrinningsområdet (Lång m.fl., 2008). Resultat av vattenkemiska data jämfördes med information om jordart och jorddjup.

Effekten av integrerad våt- och fastmarksbehandling

**Effekter på bottenfauna**

Bottenfaunan inventerades i två bäckar i Nissadalen, en kalkad och en okalkad (Ekologgruppen, 2006). I dessa bäckar har bottenfaunan inverterats årligen sedan kalkningen genomfördes (se stycke 2.2.3 Nissadalen).

**Övriga effekter av kalkning**

**Vegetation**

Markvegetationen i Nissadalen inventerades i syfte att kartlägga långsiktiga förändringar på artsammansättningen (Jan-Anders Aronson, Miljötjänst, pers. komm.). Inventeringen genomfördes i samma områden och med samma metodik som tidigare uppföljningar (se stycke 2.2.3 Nissadalen).

Även de mer akuta effekterna på markvegetationen studerades (Ekologgruppen, 2007). Detta utfördes i tre av områdena som kalkades inom Movib och vegetationen inventeras före spridningen och direkt efter. Transekter lades ut inom varje område och längs dessa placerades 10 småytor med en area på 0,25 m² ut (10 per transekt). Inom varje småytta inventerades vegetationen med avseende på art och täckningsgrad. Även en översiktlig vegetationsbeskrivning, inklusive grov frekvensskattning, gjordes av området längs linjerna (ca fem meter på båda sidor om linjen).

**Mykorrhiza**

Påverkan av kalkning på ektomykorrhiza studerades mer utförligt med finansiering från Movib (Kjøller och Clemmensen, 2008). Jordprover ned till 15 cm djup (96 stycken per yta) samlades in från tre SKOKAL-områden och dess referenser (O2, P2, R2, O2R, P2R och R2R). Ett av områdena var talldominerat (O2) medan de andra två var grandominerade (P2 och R2). Jorden separerades i organisk och oorganisk horisont. Två rottoppar från varje jordprov valdes slumpmässigt ut och artbestämdes med hjälp av DNA-analys.

**Metylkvicksilver**


**Omsättning av markkol**

En studie om kalkningens inverkan på omsättningen av markens organiska materiel finansierades (Hög bom m.fl., 2008). Markprovtagning genomfördes i nio av

Från två av parcellförsöken (Hasslöv och Öringe) båda belägna i Halland, samlades även jordprover in för respirationsmätning (Hög bom m.fl., 2008).

Samhällsekonomisk konsekvensanalys
I syfte att bedöma om kalkning är ett kostnadseffektivt alternativ för att motverka försurningen i ytvatten genomfördes en kostnadseffektivitetsanalys (Bostedt m.fl., 2007). Denna utgjorde en jämförelse av kostnaden för att uppnå ett visst mål genom att kalka ytvatten och vad motsvarande kostnad skulle bli om skogsmarken istället kalkades. I analysen inkluderades dock inte andra effekter som att även mindre skogsvattendrag åtgärdas genom skogsmarkskalkning. Inom Movib finansierades därför en mer omfattande samhällsekonomisk konsekvensanalys (Bostedt m.fl., 2008).
3 Försurningsläget i skog

Slutsats:

Mätningar och modelleringar visar att surhetstillståndet i skogsmark har förbättrats betydligt sedan mitten av 80-talet. 900 000 hektar skogsmark i sydvästra Sverige uppskattas fortfarande ha hög surhetsgrad, men hög surhetsgrad är inte det samma som försurad. Den naturliga återhämtningen förväntas emellertid gå långsammare framöver och motverkas om skogsbruk bedrivs.

I sydvästra Sverige är också många sjöar och vattendrag försurade och flera vattendrag, främst mindre, innehåller höga halter av oorganiskt aluminium. Mätningar och modelleringar har visat att den naturliga återhämtningen inte blir fullständig men att halterna oorganiskt aluminium kommer att sjunka under skadliga nivåer. Detta gäller så länge ett försurande skogsbruk inte bedrivs.

3.1 Skogsmarkens surhetsstatus

Resultat från undersökningar av basmättnadsgraden i skogsmark indikerar att det utbytbara förrådet av baskatjoner minskat med mellan 30 och 50 % under den senare hälften av 1900-talet, vilket förklaras av den antropogena försurningen (se litteratursammanställningar i Johansson m.fl., 1999 och Akselsson m.fl., 2007).

En bedömning av skogsmarkens surhetsstillstånd baserat på data från markinventeringen gjordes i samband med den fördjupade utvärderingen av miljökvalitetsmålet "Bara naturlig förorsuring" (Stendahl, 2007). Analysen visar att de suraste markerna finns i sydvästra Sverige (Figur 2), där 21 % av arealen tillhör klassen med hög eller mycket hög surhetsgrad baserat på data från år 1999-2003. Totalt finns därmed uppskattningsvis drygt 900 000 hektar skogsmark i sydvästra Sverige som klassas ha hög eller mycket hög surhetsgrad (Johan Stendahl, Institutionen för skoglig marklära, SLU, pers. komm.).


Förändringen i mineraljordens pH-värde och titrerbara aciditet visar på en trend mot mindre surhet i hela landet, med undantag för nordligaste Sverige och nordvästra Götaland där inga förändringar har påvisats (Stendahl, 2007). Norrland har inte varit utsatt för försurning i någon större utsträckning och därmed kan inte heller någon återhämtning förväntas. I nordvästra Götaland kan avsaknaden av förändring bero på svagare återhämtning samt att det i området förekommer mar-
ker med god motståndskraft som inte påverkats av försurning (Naturvårdsverket, 2007).


Data från Krondroppsnätet visar att halten sulfatsvavel i markvattnet har minskat kraftigt i takt med att svavelnedfallet minskat, framför allt i södra Sverige (Nettelbladt m.fl., 2006). Effekten på de försurningsrelaterade parametrarna pH, oorganiskt aluminium och ANC är inte lika tydliga. I södra och i viss mån mellan Sverige är dock något ökande pH och ANC, samt minskande halter av oorganiskt aluminium, vanligt förekommande, medan markkemin i ytorna i norra Sverige oftast är oförändrad (Nettelbladt m.fl., 2006).


3.2 Oorganiskt aluminium och pH i ytvatten

I den fördjupade utvärderingen av miljökvalitetsmålet ”Bara naturlig försurning” anges att runt 1 500 av Sveriges drygt 50 000 sjöar större än 4 hektar var försura-

Den inventering av oorganiskt aluminium i vattendrag som genomfördes inom Movib visade att halterna var höga (över 50 μg per liter) i många vattendrag, i huvudsak i skogsälvvattendrag med avrinningsområden som var mindre än 500 ha (Löfgren m.fl., 2008a). Det förelåg inget samband mellan Ali-halterna och dagens svavel- eller kvävedeposition. Resultaten indikerade istället att höga Ali-halter främst förekommer i granskog med hög trädålder och stor virkesvolym. Högta halter kan därmed sannolikt förekomma i sura, basfattiga områden som har hett i landet.

På samma sätt som pH verkar halterna av oorganiskt aluminium i ytvattnet ha minskat över tiden. I den fördjupade utvärderingen av data från SKOKAL-områdena visades att modellerade halter av oorganiskt aluminium minskat signifikant under perioden 1990 till 2006 i fem av tio obehandlade referensvattendrag (Tabell 5) och i ett av åtta referensvattendrag där vattenkemin följs sedan mitten av 90-

![Figur 4](image-url)


Utvecklingen i pH och halten oorganiskt aluminium i ytvatten har även modellerats för fyra områden där skogsbruk inte bedrivs, inklusive Gårdsjön och Kindla (Löfgren m.fl., 2008b). Resultaten visar att pH har ökat men fortfarande är, och kommer att förbli, betydligt lägre än år 1860 (Figur 5). För oorganiskt aluminium är återhämtningen påtaglig och relativt snabb och modelleringarna indikerar att koncentrationerna kommer att ligga under 50 μg per liter inom loppet av 25-30 år även inom de mest försurade områdena, dvs. Gårdsjön och Kindla (Figur 6).
4 Skogsmarkskalkningens effekter på tillståndet i mark och vatten

Slutsats:

En tillsats av 3 ton kalk per hektar beräknas teoretiskt räcka för att kompensera för det sura nedfall som nått marken sedan början av 1960-talet. Denna giva har visat sig öka basmättadsgraden och pH, främst i de övre markskiktens. Fältförsök indikerar dock att påverkan på ytvatten är relativt liten om avrinningsområdet behandlas med 3 ton kalk per hektar. Kalkmängden är otillräcklig för att reducera halterna oorganiskt aluminium i ytvatten till under 50 μg per liter.

4.1 Kompensationsbehov

Mängden kalk som behöver tillsättas för att kompensera för det sura nedfallet har beräknats baserat på den icke-marina svaveldepositionen (både våt- och torrdeposition). Den stora påverkan kom i början av 60-talet. Innan dess var skorstenarna låga och därmed påverkan av utsläpp av försurande ämnen lokal. Därför valdes år 1960 som utgångsår och den ackumulerade svavelmängden i depositionen beräknades för avrinningsområden till 135 tidsserysjöar utspridda över hela Sverige (Filip Moldan, IVL Svenska Miljöinstitutet AB, pers. komm.).

Kalkbehovet varierade mellan 0,3 och 4,5 ton kalk per hektar för hela Sverige och mellan 0,7 och 4,5 ton per hektar i Skåne, Blekinge, Halland, Kronoberg, Jönköping och Västra Götalands län (Filip Moldan, IVL Svenska Miljöinstitutet AB, pers. komm.). Medel för de senare länen låg på 2,1 ton per hektar och kalkbehovet överskred 3 ton per hektar i 5 av 36 avrinningsområden (1 av 4 i Skåne, 2 av 10 i Västra Götaland och 2 av 4 i Halland).

En giva motsvarande 3 ton kalkverkan per hektar har förordnats eftersom den skulle kunna ge positiva effekter på avrinningsvattnet utan påtaglig risk för skador (se stycke 1.4). Denna giva torde därmed också teoretiskt vara tillräcklig för att kompensera för det sura nedfallet i de flesta områden i sydvästra Sverige.

4.2 Effekter på mark och vatten

4.2.1 Mark- och vattenkemi

Initiativ leder kalkning till en höjning av pH i humusskiktet (se litteratursammanställning i Johansson m.fl., 1999), vilket också visas i de gamla kalkningsförsöken (Nihlgård m.fl., 1996b) så väl som i SKOKAL-områdena (Löfgren m.fl., 2008b). Effekten på pH i humusskiktet är dosberoende och vid låga givor (1-2 ton per hektar) visade sig pH-förändringen i humuslagret knappt vara mätbar i en studie (Nihlgård m.fl., 1996b). Om kalkgivan överstiger 2 ton per hektar brukar dock pH i de översta delarna av humuslagret påverkas relativt snabbt (se litteratursammanställning i Johansson m.fl., 1999). I Skogsforens parcellförörsök orsakade en tillförsel av 3 ton kalk per hektar en signifikant effekt i humuslagret och pH hade ökat med mellan 0,6 och 0,7 pH-enheter efter fyra år (Nohrstedt, 2002). Sexton år efter en tillförsel av 3 ton kalk per hektar var pH i humuslagret i SKOKAL-områdena i
medeltal 1,2 pH-enheter (intervall 0,2-1,5) högre jämfört med tillståndet före kalkning (Löfgren m.fl., 2008b). I fem av områdena hade pH ökat successivt under hela perioden, i fyra endast under de första fem åren och i fyra var pH-förändringarna obetydliga jämfört med referensområdena (Löfgren m.fl., 2008b). Också katjonsbyteskapaciteten i humusskiktet hade ökat (Löfgren m.fl., 2008b).

Effekten i humuslagret kvarstår under en lång tid och en del av calciumjonerna kommer att binda härtill det organiska materialet (Nihlgård m.fl., 1996b) men resten rör sig ned i markprofilen. Ju tjockare humusskiktet är desto längre tid tar det innan effekter uppstår i mineraljorden (se litteratursammanställning i Johansson m.fl., 1999; Löfgren m.fl., 2008b). I Skogforsks parcellförsök hade pH ökat, i de flesta fall signifikant, med runt 0,1 pH-enheter i de översta 10 cm av mineraljorden fyra år efter en tillförsel av 3 ton kalk (Nohrstedt, 2002). Sexton år efter en tillförsel av 3 ton kalk per hektar i SKOKAL-områdena var basmättnadsgraden ned till 10 cm djup i medeltal 30-40 % högre än före åtgärden och pH på 0-5 cm djup i mineraljorden i medeltal 0,3 pH-enheter högre (Löfgren m.fl., 2008b). I de okalkade referensområdena hade pH tvärt om sjunkit med i medeltal 0,2 pH-enheter. Ökningar i pH på 5-10 cm djup förekom i knappat hälften av de kalkade områdena och förändringen låg på i medeltal 0,1 pH-enheter, med en spridning på -0,2 till 0,5 pH-enheter (Löfgren m.fl., 2008b). Även på detta djup hade pH sjunkit i tre av fyra referensområden, och förändringen var i medeltal 0,2 enheter. Trots den förbättring som skett bedömdes över hälften av de kalkade SKOKAL-områdena fortfarande ha ett högt eller mycket högt surhetsstillstånd (baserat på det översta 5-10 cm av mineraljorden) 16 år efter kalkningen (Löfgren m.fl., 2008b). Förändringar i markens surhetsgrad varierade över tiden. Ökningen i basmättnadsgrad på 0-5 cm djup hade klingat av eller helt stannat upp i alla utom tre av SKOKAL-områdena. I de kalkade områdena hade kalktillförseln på 5-20 cm djup 16 år efter kalkning påtats avändning i pH och halter av oorganiskt aluminium (Geibe m.fl., 2003). Ökning i basmättnadsgrad berodde snarare på att mängden utbytbart kalcium på markpartiklarna ökat än att mängden väte- och aluminiumjoner minskat. Skillnader kunde dock också ses i pH, och merparten av de behandlade områdena hade ett högre pH-värde än sina referens. Undantagen var området som kalkats knappt 90 år före kalkning, där två av tre använda kalkdoser (3 och 8 ton kalk per hektar) inte höjt pH jämfört med referens, och ett område där 10 ton kalk tillförts drygt 30 år före
uppföljningen. Även om en effekt uppkommer också vid låga kalkdoser har mängden kalk visat sig påverka hur stor effekten på djupare marklager blir (Nihlgård m.fl., 1996b). Vid en uppföljning i två av de gamla kalkningsförsökten, där olika doser använts, hade en kalkmängd på 3 ton per hektar orsakat en ökning på 0,1-0,2 pH-enheter 40 år efter tillförseln medan dosen 18 ton per hektar orsakat en pH-ökning på 0,5 enheter på 40-50 cm djup (Nihlgård m.fl., 1996b).

Även effekter av kalkningen på markvatten på 50 cm djup och grundvatten har påvisats. I dosförsöken uppslades förhöjda calciumkoncentrationer i markvattnet direkt efter kalkning oavsett dos (Zetterberg m.fl., 2006a). Effekten stabiliserades efter 1-2 år och höll på att klinga av efter 12 år. Calciumkoncentrationerna ökade med dos och påverkades även av kalksort. Också halterna av totalaluminium och vätejoner minskade i de flesta fall som ett resultat av kalkningen och effekten ökade generellt med dosen (Zetterberg m.fl., 2006a). I SKOKAL-områdena hade en tillförsel av 3 ton per hektar orsakat små effekter på markvattnet på 50 cm djup fem år efter kalktillförseln och då främst i form av ökningar av calciumhalten (Akselsson m.fl., 1998). Tolv år efter kalkningen skilde sig inte pH i markvattnet på 50 cm djup från värdena före kalkning och de förändringar i markvattenkemi som ändå noterades förklarades av sjunkande svavelnedfall och inte av kalkningen (Löfgren m.fl., 2008b). I de gamla kalkningsförsöken (20 år eller mer efter kalkning) återfanns effekter på markvattnet på 50 cm djup genom att kalkade områden hade signifikant högre calciumhalter samt högre pH och ANC jämfört med okal-kade referensområden (Larsson m.fl., 2003a). Trenden i pH, med högre värden i de kalkade områdena än i referensområdena, återfanns i alla områden oavsett tid sedan kalkning (23 till 45 år) och kalkgiva (5 till 10 ton per hektar). För ANC fanns två undantag från den generella trenden där ANC var lägre i behandlade områden. Ett av dessa var ett område som behandlats med 5 ton kalk runt 50 år före undersökningen och det andra ett område som behandlats med 10 ton kalk runt 40 år före undersökningen. Inte heller i detta fall verkar kalkgivan (3 till 10 ton per hektar) eller tiden som passerat sedan kalkningen (23 till 87 år) spela en avgörande roll. I de områden där halten oorganiskt aluminium i markvattnet mättes (områden som behandlats med 6 till 10 ton kalk 23 till 45 år före uppföljningen) fanns tendenser till lägre halter av detta i de kalkade områdena än i referensområdena, med ett undantag (ett område där 10 ton kalk per hektar tillförts runt 40 år före uppföljningen) (Larsson m.fl., 2003a). Skillnaden mellan behandlade områden och referensområden var dock inte signifikant.

Effekter på grundvattenkemin, i form av signifikant högre pH (0,5-enheter) och signifikant lägre aluminiumhalter, har upptäckts i ett område drygt två år efter tillförsel av 5 ton kalk per hektar medan ingen tydlig effekt uppstod på grundvattnet 5-7 år efter en tillförsel av 1,5 till 6 ton kalk per hektar i ett annat område (Eriksson, 1996). Transektstudien som genomfördes i fyra SKOKAL-områden 16 år efter tillförseln av 3 ton kalk per hektar visade att effekterna av kalkning på grundvattenkemin ned till 70 cm var små och inte entydiga eftersom olika effekter uppkom i olika områden, delar av områden och under olika årstider (Löfgren m.fl., 2008b).

Syftet är ju dock att kalkningen även ska ge effekt på ytvattenkemin. I teorin kan kalkningen ge en första snabb initial effekt på ytvatten genom att en del av kalken hamnar i utströmningsområden och den bäcknära zonen. Därefter antas kalkningseffekten avta för att sedan återkomma när kalken trängt ned genom markpro-
filen och påverkat grundvattnet. Ett annat mönster har dock uppvisats i de studier som har gjorts av ytvattenkvalitet efter fastmarksbehandling, både i SKOKAL-områdena (Figur 7-9) och i Nissadalen (Figur 12-13). Trots att mängden kalkverkan som tillförlits varierar mellan områdena visar en jämförelse av medelvärden från kalkade områden och okalkade referensområden i båda fallen en snabb initial effekt som sedan håller i sig (Figur 7, 12 och 13). En jämförelse av medelvärden bör emellertid inte göras okritiskt. Även för enskilda områden kan en skillnad i pH mellan perioden före och efter kalkning ses, medan motsvarande effekt saknas i referensområdena (Figur 8 och 9). Den initiala snabba effekten tros vara ett resultat av kalken som hamnat direkt i vattnet och i den bäcknära zonen. Det krävs dock även en kontinuerligt högre uttransport för att upprätthålla ett högre pH-värde i det avrinnande vattnet. En liknande effekt rapporterades från Gärdsjön där 1,5 ton kalk per hektar tillfördes och sedan två år senare kompletterades med ytterligare 4,5 ton på halva området (Warfvinge m.fl., 1996). Utflödet av oorganiskt aluminium minskade med 40-50 % relativt kontrolytan i samband med den andra kalkningen och effekten höll i sig under de fem år som mätningarna fortsatte.

Storleken på pH-ökningen i ytvatten vid första observationen efter kalkningen, alltså den initiala effekten som troligtvis orsakas av kalk som hamnar i utströmningsområdena, skattades för de kalkade SKOKAL-områdena samt referenserna (Claudia von Brömssen, Enheten för tillämpad statistik och matematik, SLU, pers. komm.). En tidsseriemodell (ARIMA) med en intervention för kalkningseffekt användes. I modellen skattades korrelationen mellan intilliggande observationer för att beskriva serien. Kalkningseffekten modellerades genom en extern förklarande variabel som antog värdet 1 vid tidpunkten av första observationen efter kalkningen och 0 alla andra tidpunkter. ARIMA-modellen var inte optimal i modelleringen av SKOKAL-data eftersom provtagningen skett med varierande tidsavstånd. Detta problem bedömdes dock vara försumbart eftersom skattningen av effekten vanligtvis är robust och inte påverkas av att observationerna inte har exakt lika tidsavstånd. P-värdet beräknades dock för effektskattningarna med hjälp av normalfördelningsantagande, som håller för pH-serier men kan vara tveksamt för andra vattenkemiska variabler. Före användning av tidseriemodellen hade säsongsvariation rensats bort genom att säsongsmedelvärden drogs av. Modellen kunde inte anpassas till alla områden och applicerades därför inte på G1, K2, P1 och P2. En signifikant effekt (p<0,05) återfanns för område G2, L2, O2 och R2. Ökningen i pH jämfört med perioden före kalkning låg i dessa fyra områden på mellan 0,3 och 1,0 pH-enheter. Inga motsvarande ökningar återfanns för de okalkade referensområdena. Hur länge effekten håller i sig kunde inte utvärderas med hjälp av modellen.
I den fördjupade utvärderingen av data från SKOKAL-områdena genomfördes en analys av ytvattenkemiska effekter (Löfgren m.fl., 2008b). Samma analys genomfördes för okalkade områden och då inte bara referensområdena till de behandlade SKOKAL-områdena utan även andra. Signifikanta monotona ökningar i pH återfanns i tre av nio kalkade områden (Tabell 4) och i åtta av tio okalkade (Tabell 5). Vare sig områdena kalkats eller inte hade alltså pH ökat i de studerade vattendragen. Ökningstakten var 0,01 till 0,02 pH-enheter per år för de okalkade och 0,01-0,06 för de kalkade områdena (Tabell 4 och 5). Två av bäckarna i okalkade områden och en i kalkade uppvisade signifikanta minskningar i halterna av oorganiskt aluminium, 30-39 µg per liter och år i de okalkade och 49 i den kalkade. Dessutom förekom sjunkande trender oorganiskt aluminium i ytterligare tre okalkade och sex kalkade bäckar, men det är osäkert om dessa trender är monotona (Tabell 4 och 5). Kemin i ytterligare åtta okalkade vattendrag analyserades för perioden 1993-1997 fram till och med 2006 och även för hälften av dessa förekom en signifikant pH-lökning på 0,01 till 0,02 enheter och i ett av dem en statistiskt signifikant minskning i halten oorganiskt aluminium (Löfgren m.fl., 2008b). För de kalkade vattendragen genomfördes analysen också på vattenkemidata under enbart högflöden men detta påverkade inte nivåerna eller riktningen på trenderna (Löfgren m.fl., 2008b). Slutsatsen som drogs var att de eventuella effekter på ytvatten som kan uppkomma vid en tillförsel av 3 ton kalk är otillräckliga för att påverka vattnemin i någon större utsträckning (Löfgren m.fl., 2008b).

I ett område där 1,5 ton kalk per hektar tillförts fastmarken i avrinningsområdet, och kompletterats med en tillförsel av ytterligare 4,5 ton i halva området två år senare, hade pH i ytvattnet ökat med 0,1-0,2 enheter under de fem år som följde efter åtgärden (Warfvinge m.fl., 1996). I andra områden, där 0,5 till 1,5 respektive 5 ton kalk tillförts per hektar, sågs dock inga påtagliga effekter efter upp till nio år. Slutsatsen som drogs var även i detta fall att effekterna på ytvatten av skogsmarkskalkning med låga givor var små (Warfvinge m.fl., 1996).
Figur 8. Utveckling i pH (till vänster) och kalcium (till höger) över tiden i SKOKAL-områdena (G2, G2R, K2, L1, L2, L2R och N1). Data från de kalkade områden visas med heldragna, mörkblå linjer och data från referensområdena med streckade, rosa linjer. Perioden när kalkningen utfördes är markerad med vertikala linjer. Data från Therese Zetterberg, IVL Svenska Miljöinstitutet AB.
Figur 9. Utveckling i pH (till vänster) och kalcium (till höger) över tiden i SKOKAL-områdena (O2, O2R, P1, P2, R2 och R2R). Data från de kalkade områden visas med heldragna, mörkblå linjer och data från referensområdena med streckade, rosa linjer. Perioden när kalkningen utfördes är markerad med vertikala linjer. Data från Therese Zetterberg, IVL Svenska Miljöinstitutet AB.
Tabell 4. Statistiskt signifikanta trender (\(p<0,05\), Seasonal Kendall, Tiels slope) i ytvatten 1990-2006 (april, maj, september och oktober) i kalkade SKOKAL-områden. \(H^+\), ANC, Ca, Mg, Na, K, \(SO_4\), Cl, \(NO_3\) och BC i \(\mu\)ekv per liter samt TOC i mg per liter. Total aluminium (tot Al), organiskt aluminium (org Al), oorganiskt aluminium (oorg Al) i \(\mu\)g per liter (org Al och oorg Al modellerade med WHAM-modellen). För varje parameter är det den årliga förändringen som anges. Blått fält = statistiskt signifikant ökning, gult fält = statistiskt signifikant minskning, grått fält = osäkert om monoton trend. Även antalet observationer anges (n). Från Löfgren m.fl. (2008b).

<table>
<thead>
<tr>
<th></th>
<th>G2 (n=55)</th>
<th>K2 (n=50)</th>
<th>L1 (n=63)</th>
<th>L2 (n=48)</th>
<th>N1 (n=50)</th>
<th>O2 (n=53)</th>
<th>P1 (n=61)</th>
<th>P2 (n=50)</th>
<th>R2 (n=55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0,06</td>
<td>0,01</td>
<td></td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(H^+)</td>
<td>-0,9</td>
<td>-1,6</td>
<td></td>
<td>-1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANC</td>
<td>3,1</td>
<td>5,8</td>
<td>13,3</td>
<td>7,8</td>
<td>3,3</td>
<td>5,9</td>
<td>3,2</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>-3,0</td>
<td>-7,6</td>
<td></td>
<td>-4,8</td>
<td>-3,5</td>
<td>-1,7</td>
<td></td>
<td>-3,1</td>
<td>-8,2</td>
</tr>
<tr>
<td>Mg</td>
<td>-3,3</td>
<td>-2,4</td>
<td>-2,3</td>
<td></td>
<td>-1,2</td>
<td></td>
<td>-1,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>-4,3</td>
<td>-6,3</td>
<td>-3,0</td>
<td>-7,0</td>
<td></td>
<td>-4,1</td>
<td>-3,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>(SO_4)</td>
<td>-4,8</td>
<td>-14,5</td>
<td>-5,2</td>
<td>-12,6</td>
<td>-6,3</td>
<td>-8,6</td>
<td>-5,8</td>
<td>-8,7</td>
<td>-7,6</td>
</tr>
<tr>
<td>Cl</td>
<td>-5,2</td>
<td>-5,1</td>
<td></td>
<td>-5,4</td>
<td>-8,0</td>
<td></td>
<td></td>
<td>-3,3</td>
<td></td>
</tr>
<tr>
<td>(NO_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
<td>0,2</td>
<td></td>
<td>0,2</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>tot Al</td>
<td>-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>org Al</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>oorg Al</td>
<td>-6</td>
<td>-7</td>
<td>-49</td>
<td></td>
<td>-19</td>
<td>-4</td>
<td></td>
<td>-4</td>
<td>-1</td>
</tr>
<tr>
<td>BC</td>
<td>-14,3</td>
<td>-13,1</td>
<td>-10,7</td>
<td>-10,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca/ANC</td>
<td>-0,04</td>
<td>-0,20</td>
<td>-0,15</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0,27</td>
</tr>
</tbody>
</table>
Tabell 5. Statistiskt signifikanta trender (p<0,05, Seasonal Kendall, Tiels slope) i bäckvatten 1990-2006 (april, maj, september och oktober) i okalkade områden. Förutom SKOKAL-områdenas referenser ingår IM-områden (där skogsbruk inte bedrivs) samt referensområden inom IKEU. För mer utförlig beskrivning se Tabell 4. Från Löfgren m.fl. (2008b).

<table>
<thead>
<tr>
<th></th>
<th>Gårdsjön IM</th>
<th>Pip-bäcken nedre</th>
<th>Lomma-bäcken nedre</th>
<th>Bråtängs-bäcken IM</th>
<th>Ringsmo-bäcken</th>
<th>G2R</th>
<th>L2R</th>
<th>O2R</th>
<th>P2R</th>
<th>R2R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=61)</td>
<td>(n=92)</td>
<td>(n=89)</td>
<td>(n=89)</td>
<td>(n=56)</td>
<td>(n=48)</td>
<td>(n=47)</td>
<td>(n=57)</td>
<td>(n=48)</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H+</td>
<td>-1,9</td>
<td>-1,0</td>
<td>-1,8</td>
<td>-0,9</td>
<td>-0,6</td>
<td>-1,5</td>
<td>-2,6</td>
<td>-1,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANC</td>
<td>11,4</td>
<td>1,9</td>
<td>2,5</td>
<td>1,9</td>
<td>1,6</td>
<td>4,1</td>
<td>8,1</td>
<td>6,2</td>
<td>6,2</td>
<td>6,5</td>
</tr>
<tr>
<td>Ca</td>
<td>-2,1</td>
<td>-1,3</td>
<td>-2,0</td>
<td>-2,5</td>
<td>-3,1</td>
<td>-3,2</td>
<td>-4,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>-5,5</td>
<td>-1,1</td>
<td>-1,2</td>
<td>-1,3</td>
<td>-0,5</td>
<td>-2,5</td>
<td>-2,8</td>
<td>-1,3</td>
<td>-3,2</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td>-1,1</td>
<td></td>
<td></td>
<td>-3,1</td>
<td>-6,1</td>
<td>-4,4</td>
<td>-5,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4,2</td>
<td>-8,2</td>
<td>-6,0</td>
<td>-6,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO4</td>
<td>-12,6</td>
<td>-3,8</td>
<td>-5,7</td>
<td>-5,6</td>
<td>-3,4</td>
<td>-7,6</td>
<td>-11,5</td>
<td>-8,3</td>
<td>-8,7</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4,2</td>
<td>-8,2</td>
<td>-6,0</td>
<td>-6,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO3</td>
<td>-0,04</td>
<td></td>
<td></td>
<td></td>
<td>-0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOC</td>
<td>0,5</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,1</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>tot Al</td>
<td>-19</td>
<td></td>
<td>0,2</td>
<td>0,2</td>
<td>0,1</td>
<td>0,3</td>
<td>-39</td>
<td>-21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>org Al</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oorg Al</td>
<td>-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-7</td>
<td>-39</td>
<td>-22</td>
<td>-9</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>-16,7</td>
<td>-4,0</td>
<td>-5,0</td>
<td></td>
<td>-8,4</td>
<td>-11,2</td>
<td>-9,9</td>
<td>-12,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca/ANC</td>
<td>-0,01</td>
<td>-0,01</td>
<td></td>
<td></td>
<td>-0,1</td>
<td>-0,11</td>
<td>0,14</td>
<td>-0,06</td>
<td>-0,12</td>
<td></td>
</tr>
</tbody>
</table>

Inom Movib studerades även möjligheterna att genom en tillförsel av 3 ton kalk per hektar till skogmark sänka halterna av oorganiskt aluminium till måttliga nivåer, dvs. ≤50 µg per liter. Resultaten av mark-, grundvatten- och ytvattenkemiska analyser i SKOKAL-områdena 16 år efter kalkning indikerade att detta inte är möjligt (Löfgren m.fl., 2008b). Mängden utbytbart aluminium ökar påtagligt vid pH-värden under runt 5-5,5 (Löfgren m.fl., 2008b). Så länge marken har ett pH under 5,5 finns det därmed en risk för läckage av oorganiskt aluminium och en tillförsel av 3 ton kalk kan antagligen inte höja pH i marken till denna nivå. Kalkningen medförde en tillförsel av ANC som motsvarade 60-150 % av den utbytbara aciditeten ned till 10 cm djup i mineraljorden i SKOKAL-områdena och efter 16 år kvarstod en hel del av den utbytbara aciditeten ned till 30 cm djup (Löfgren m.fl., 2008b). I samtliga SKOKAL-områden var pH fortfarande lägre än 5 i mineraljorden på 0-30 cm djup vilket indikerar aluminiumbuffering. I många fall kan marken ha varit surare än så även före den antropogena depositionsbedingade försumningen. Även i andra fall, när marken hade ett pH över 5,5 före utsläppen av förürande ämnen och en kalkgiva på 3 ton per hektar teoretiskt skulle räcka till för att kompensera för det sura nedfallet, kan kalkmängden vara otillräcklig. Detta beror på att en stor andel av kalken inte når djupare marklager utan går åt att öka katjonsutbyteskapaciteten eller neutralisera humussyror i markens översta skikt (Löfgren m.fl., 2008b). Vidare kan kalk inaktiveras genom kemiska processer. Undersökningen i SKOKAL-områdena indikerar dock att mängden kalk som inaktiverats var liten (Löfgren m.fl., 2008b).
4.2.2 Integrerad skogs- och våtmarkskalkning

När aska och kalk tillförs hela avrinningsområden, inklusive utströmningsområden, blir effekten på avrinningsvattnet både snabb och påtaglig (se Warfvinge m.fl., 1996 och litteratursammanställning i Johansson m.fl., 1999). Detta visas i resultat från Fagerhultsbäcken där en integrerad strategi, med behandling av både våtmark och fastmark, gav en snabb initial effekt på ytvattenkvaliteten (Abrahamsson, 2007). Dosen som användes var 4 ton kalk + 2 ton aska på fastmarken och 2 ton kalk på våtmarken (se stycke 2.2.4). Medan pH ökat med en halv enhet, från 4,5-5,5 till 5-6, i bäcken i det behandlade området sågs inte samma effekt i referensbäcken (Figur 10). Det syns inga tecken på att effekten är på väg att avta (Abrahamsson, 2007).

Mätningar av oorganiskt aluminium började inte göras förrän ett år efter behandlingen. Även halterna av oorganiskt aluminium är dock lägre i den behandlade bäcken än i referensbäcken (Figur 11) och det är troligt att detta är en effekt av behandlingen (Abrahamsson, 2007). Också halterna kalcium och magnesium samt alkaliniteten ökade i Fagerhultsbäcken efter behandlingen (Abrahamsson, 2007).
Också resultaten från Nissadalen visar att en integrerad strategi ger en snabb och positiv effekt på ytvattenkvaliteten (Figur 12 och 13). Även om en viss effekt på ytvattenkvaliteten ses i de områden där endast fastmarken behandlats med en blandning av 4 ton kalk och 2 ton aska, ses den stora förbättringen i vattenkvaliteten i de områden där också våtmarker ingått i åtgärden (Zetterberg, 2008). Nu, efter nästan 10 år, har dock effekten av våtmarkskalkningen börjat avta.

![Figur 11. Halter av oorganiskt aluminium i Fagerhultbäcken (behandlad) och Sågebäcken (obe-handlad) under åren 2001-2006. Från Abrahamsson (2007).](image1)

4.3 Effekter på bottenfauna

En undersökning av bottenfauna och påväxtalger gjordes i SKOKAL-områdena sju-åtta år efter kalkning (Larsson m.fl., 1999). Resultaten visar att ingen ökning i vare sig antalet individer eller taxa hos bottenfaunan kunde detekteras. För påväxtalger var förändringarna små men det fanns tendenser till ökad artrikedom och någon mindre andel surhetsindikerande arter efter behandling.

Även i Nissadalen dominerade de försurningståliga arterna fortfarande bäcken i det behandlade området sju år efter behandling och försurningssäkra grupper saknades (Ekologgruppen, 2006). Den behandlade lokalens bedömdes därmed fortfarande vara starkt försurningssåverkade. Däremot sågs en positiv trend i antalet taxa vilket ofta är ett tidigt tecken på minskad försurningssåverkan. Denna trend kunde inte ses i bäcken i det obehandlade området. Också i detta fall var alltså sju år för kort för att några mer dramatiska effekter skulle ha kunnat uppstå i bottenfaunans artsammansättning, trots att vattenkvaliteten förbättrats (Figur 12 och 13).

4.4 Marktypens inverkan

slutningar nära vattendrag, med inga eller tunna jordlager och med begränsad förekomst av humus och torv, teoretiskt sett är lämpligast att markkalka (Lång m.fl., 2008). Detta stöds av norska studier som visar att skogsmarkskalkning på tunna jordar med hög genomströmningshastighet också kan ge en relativt snabb pH-effekt ända ut i vattendragen (Hindar m.fl., 2003; Hindar, 2005).

Också i den fördjupade utvärderingen av data från SKOKAL-områdena poängterades att humusen har en stor förmåga att neutralisera tillförd kalk och att binda upp de frigjorda kalciumjonerna genom att katjonbyteskapaciteten ökar och jonbyte med vätejoner och aluminium på befintliga adsorptionsytor sker (Löfgren m.fl., 2008b). Medeldjupet på humusen i SKOKAL-områdena var då ändå bara 4 cm vilket är betydligt tunnare än för merparten av skogsmarken i sydvästra Sverige (Löfgren m.fl., 2008b).
5 Kostnader för skogsmarkskalkning

Slutsats:

Om värden av ekosystemtjänster sätts till 920 kronor per hektar skogsmark i avrinningsområdet och rekreationsvärde av sportfiske sätts till 332 kronor per hektar sjöyta är skogsmarkskalkning inte samhällsekonomiskt lönsamt. Dessa värden är baserade dels på internationella överenskommelser om begränsade utsläpp, dels på svenska studier av sportfiska betalningsvilja.

Slutsatserna gäller under förutsättning att kalken sprids från marken (vilket medför en underskattning av kostnaden), att utfallet av åtgärden är optimalt positivt (överskattning av ekosystemtjänsternas värden) och att framtida nyttor diskonteras i enlighet med rekommendationer från den brittiska regeringen.

5.1 Samhällsekonomiska konsekvenser av skogsmarkskalkning

För att skogsmarkskalkning ska ses som samhällsekonomiskt lönsamt måste de värden som kalkningen genererar överskrida kostnaderna. En samhällsekonomisk konsekvensanalys genomfördes där olika scenarier jämfördes: naturlig återhämtning, tre olika scenarier med olika effektivitet av skogsmarkskalkning, två olika scenarier för ytvattenkalkning (konstant nivå och avtagande) samt en kombination av ytvatten- och skogsmarkskalkning (Bostedt m.fl., 2008). Kostnaderna som inkluderades var de för spridning, planläggning och uppföljning. Beräkningarna av kostnaden för skogsmarkskalkningen baserades i studien enbart på markspridning vilket innebär att den egentliga kostnaden blir högre på grund av att merparten av arealen endast kan åtgärdas via helikopter och kostnaden för detta är högre (se stycke 9.2.1). Det ekonomiska värde av nyttorna utgjordes av betalningsvilja för att skydda ekosystem samt rekreationsvärde av fiske. Betalningsviljan för att skydda ekosystem baserades på kostnaden för de internationella överenskommelserna om begränsade utsläpp för att minska de försurande utsläppen och sattes till 920 kronor per hektar skogsmark i avrinningsområdet. Rekreationsvärde för fisket baserades på en tidigare undersökning och sattes till 332 kronor per hektar sjöyta.

Baserat på rekommendationer från brittiska regeringen användes en diskonteringsränta på 3,5 % för värden och kostnader som uppstå 1 till 30 år framåt i tiden och 3 % för åren 31 till 50. Resultaten visade att kostnaderna för åtgärden överskred värdet även om det mest optimistiska scenariot för skogsmarkskalkningen (se nedan), där effekten uppkom efter 15 år och resulterade i att inga sjöar och vattendrag var försurade efter 35 år, användes (Bostedt m.fl., 2008). Inte heller en kombination av ytvatten- och skogsmarkskalkning blev kostnadseffektiv. Däremot ansågs ytvattenkalkning vara det under förutsättning att enbart försurade sjöar åtgärdas. Slutsatsen som drogs var att ytvattenkalkning genomgående var en mer samhällsekonomiskt lönsam åtgärd än skogsmarkskalkning oavsett ränta och tidsperspektiv.

Om framtida konsekvenser gavs samma värde som om de uppstått idag (dvs. värdena ej diskonterades) blev det mest optimistiska scenariot (se nedan) för skogs-
markskalkning kostnadseffektivt (Bostedt m.fl., 2008). Vid en diskonteringsränta på 3,5 respektive 3 % blev kalkningen samhällsekonomiskt lönsam om värdet på nytta översteg 2 100 kronor (baserat på det optimistiska scenariet) respektive 19 500 kronor per hektar (baserat på mellanscenariet). Om man antar att rekreationssvärden är noll, dvs. att de försurade vattnen är så små att de inte betingar något fiskevärde, måste ekosystemsvärden alltså höjas till 2 100 respektive 19 500 kronor för att åtgärden ska bli lönsam. I en studie om politisk vilja att genomföra utsläppsbehandlingar angavs en maximal politisk betalningsvilja för att skydda ekosystem på 3220 kronor per hektar och år. Om detta belopp används blev skogsmarkskalkning en kostnadseffektiv åtgärd förutsatt markspridning av kalk och optimal effekt av åtgärden men inte om ett mindre optimistiskt scenario används (Bostedt m.fl., 2008).

Det mest optimistiska scenariot för skogsmarkskalkningens effekter ansågs vara orealistiskt (Bostedt m.fl., 2008). Utvärderingen av mark-, grundvatten- och yt-vattenkemi i SKOKAL-områden visar att det inte är sannolikt att en tillförsel av 3 ton kalk leder till en sänkning av halterna oorganiskt aluminium i ytvatten under 50 μg per liter (se stycke 4.2.1). Effekten av skogsmarkskalkning kommer därmed snarare att ligga någonstans i intervallet mellan analysens nollscenario och mellanscenario. Den samhällsekonomiska nytta beräknad utgående från det optimistiska scenariot är följaktligen överskattad. Om dessutom en rimlig fördelning mellan mark- och helikopterspridning ansätts, 40 respektive 60 % (se stycke 9.2.1), måste de värden som skogsmarkskalkning ger upphov till överstiga 28 000 kronor per hektar för att åtgärden ska vara samhällsekonomiskt lönsam (baserad på mellanscenariot).

En viktig parameter att beakta vid en samhällsekonomisk konsekvensanalys är skuggpriset på icke-marknadsprissatta effekter av skogsmarkskalkningen, exempelvis värdet av att ha icke-försurade sjöar som sällan kommer att nyttjas för fiske (Bostedt m.fl., 2008). Dessa kan uppskattas genom direkta metoder, exempelvis enkäter där man frågar om betalningsviljan för rikare fiskevatten, eller indirekta metoder där man utgår ifrån analyser av exempelvis politiska beslut i miljöfrågor. I allmänhet anses de direkta undersökningsmetoderna ge en mer korrekt bild av ekosystemvärdena. Någon sådan har dock inte genomförts för skogsmarkskalkning utan betalningsviljan baserades på politiska beslut. Detta kan innebära en över- eller underskattning av den verkliga betalningsviljan.
6 Övriga effekter av skogsmarkskalkning

**Slutsats:**

Risken för negativa effekter bedöms vara tämligen små vid en tillförsel av 3 ton kalk per hektar. Mängden är tillräckligt stor för att inte påtagliga surstötar ska uppstå. Risken för att floran och faunan påverkas negativt är relativt liten och inte heller ett ökat kväveläckage har hittills visat sig vara något större problem i områden där 3 ton kalk per hektar tillförs.

Skogsproduktionen torde snarare påverkas positivt än negativt i områden som är aktuella för kalkningsåtgärder eftersom markerna är högproduktiva. Dock finns det en viss risk för att angreppen av skadegörare, så som rotticka, kan öka.

Mineraliseringen av markkol kan påverkas av kalkning. Även avgången av metan och lustgas från marken kan påverkas och kolinlagringen i träden genom tillväxt-effekter. Nettoeffekten för växthusgasflöden är dock svår att skatta.

Utlakningen av kvicksilver till ytvatten kan teoretiskt öka som en effekt av kalkningen. På kort sikt finns inga indikationer på detta i fältstudier men mer långsiktiga effekter är ännu inte kända.

### 6.1 Surstöt

Tillförsel av kalk stimulerar nedbrytningen vilket ökar mängden organiska syror. Dessutom kommer calciumjonerna att tränga bort väte- och aluminiumjoner från markpartiklarna. Om mängden tillsatt karbonat är för liten för att neutralisera dessa effekter kan kalkningen ge upphov till en så kallad surstöt. Undersökningar från norra Sverige visar att naturliga surstötar vid snösmältning, som sänker pH med upp till 2 pH-enheter, naturligt kan begränsa öringens geografiska utbredning (Buffam, 2007).

En sänkning av pH i markvätskan på 0,5 – 1 enheter uppstod under åtminstone sex år efter en tillförsel av 1 ton kalk per hektar (Nohrstedt, 1992). I de uppföljningar som gjorts när 3 ton kalk tillförlts per hektar har dock inga påtagliga surstötar uppkommit (Akselsson m.fl., 1998).

### 6.2 Flora och fauna

Sammanställningar av hur olika organiser kan påverkas av kalkning har gjorts av Johansson m.fl. (1999) och Pleijel m.fl. (2001). Två grupper som är mycket känsliga för kalk är mossor, främst vitmossor och levermossor, och lavar som återfinns i skogar med lång kontinuitet eller på torr mark. I första hand drabbas mossor och lavar av akuta effekter omedelbart efter kalkningen. I äldre kalknings-försök har antalet mossarter varit större i kalkade än i okalkade bestånd medan täckningsgraden av lavar fortsatte vara lägre (Hallbäcken m.fl., 1996). Även svampar som bildar ektomykorrhiza förekommer med hög artrikedom i sura miljöer och kan därmed missgynnas av kalkning. Skogsmarkkalkning har visat sig leda till en förändring i sammansättningen av mykorrhizasamhället på trädrötter,
men effekterna varierar mellan olika studier och områden (se exempelvis Erland och Andersson, 1996; litteratursammanställning i Johansson m.fl., 1999; Taylor och Finlay, 2003). I en studie av kalkningens påverkan på markfaunan noterades en förskjutning av artsammansättningen genom att vissa arter gynnades och andra missgynnades (Persson m.fl., 1996). Kalkningen kan också påverka andra organismgrupper genom att en höjning av pH ökar tillgången på kväve (se stycke 6.3) och därmed kan artsammansättningen förändras mot kvävegynnade arter i kvävebegränsade system.


Slutsatsen om att de kortsiktiga effekterna är små stöds av den uppföljning som gjordes i tre områden ett halvår respektive någon månad efter kalkspridningen inom Movib (Ekologgruppen, 2007). Resultaten visade ingen påtaglig påverkan av kalktillförseln på markvegetationen.

Inom Movib genomfördes en litteraturgenomgång av effekter av kalk och aska på ektomykorrhiza och en studie gjordes också av mykorrhizasamhällena i SKOKAL-områdena 16 år efter tillförsel av 3 ton kalk per hektar (Kjøller och Clemmensen, 2008). Litteraturgenomgången visade att mykorrhiza förekommer på nära 100 % av rotspetsarna oavsett hur stor mängd kalk eller aska som tillförs och tiden som gått sedan åtgärden. Däremot minskade mängden fruktrokapparat påtagligt i tre av de fyra områdena där detta studerats. I de flesta fall orsakade tillförsel av kalk eller aska inga signifikanta effekter på artrikedommen men där emot påverkades artsammansättningen genom att vissa arter blev mer vanliga medan andra minskade i förekomst. I den studie som genomfördes i SKOKAL-områdena samt deras referenser påvisades påtagliga skillnader i ektomykorrhizasamhällena (Kjøller och Clemmensen, 2008). Det totala antalet arter skilde sig inte mellan kalkade områden och referensområden men av de 40, 59 respektive 51 arterna som identifierades i de tre kalkade områdena återfanns endast 11, 13 re-
spektive 12 i referensområdena. Överensstämelsen i artsammansättningen var emellertid också ganska begränsad mellan de kalkade områdena, speciellt mellan det talldominerade området jämfört med de grandominerade. Därmed går det inte med säkerhet att säga att skillnaderna mellan de olika bestånden är en effekt av kalkningen (Kjøller och Clemmensen, 2008).

6.3 Kväveläckage


För att undvika att kalkning ökar nitratutlakningen från skogsmark föreslog Persson och Wirén (1996) att kalkning inte bör ske på mark där kvävehalten i årsbarr ligger på ≥1,3 % av torrvikten under senhösten och vintern eller om humusskiktets C/N-kvot är ≤28 (Persson och Wirén, 1996). Ett liknande resonemang fördes i Hög bom m.fl. (2001), vilka menade att kalkning bör undvikas på marker med låg C/N-kvot (<25 i humuslagret), hög bonitet, högt kvävenedfall eller barrskog på tidigare lövskogsmark. Detta skulle således medföra att en stor andel av skogsmarken i de mest försurade områdena i sydvästra Sverige inte skulle kunna åtgärdas eftersom även kvävedepositionen i dessa områden är och har varit hög och C/N-kvoten därmed låg (Figu r 14).
alla SKOKAL-områden återfinns inom det mest kvävebelastade området med en total deposition av kväve på mer än 10 kg N per hektar och år i barrskog (Zetterberg m.fl., 2006b). Detta indikerar att risken för en ökad kväveutlakning i sydvästra Sverige vid tillförsel av 3 ton kalk per hektar är liten.

I de försök som beskrivs ovan spreds kalken i växande bestånd. Risken för nitratutlakning är troligen större i äldre bestånd med lågt kväveupptag (se literatur- sammanställning i Gundersen m.fl., 2006) och på hyggen där det inte finns någon vegetation som kan ta upp det frigjorda kvävet (Bäckman, 2003). I en studie där ett bestånd slutavverkades och sedan kalkades med 3,7 ton kalk per hektar var dock nitratutlakningen från det kalkade hygget lägre än från det okalkade referenshygget (Therese Zetterberg, IVL Svenska Miljöinstitutet AB, pers. komm.). En förklaring kan vara att etableringen av vegetationen var snabbare på det kalkade hygget än på det okalkade (Therese Zetterberg, IVL Svenska Miljöinstitutet AB, pers. komm.). Aktivt växande vegetation verkar vara en viktig faktor som begränsar risken för nitratutlakning (Ring och Högbom, 2006). Lundell m.fl. (2001) undersökte med hjälp av lysimetrar bland annat hur närvaron av trädrotter påverkade effekten av kalk på nitratutlakning i aktivt växande barrskog. De fann att kalkning ökade nitratutlakningen i ett kväverikt bestånd, men endast i frånvaro av aktiva rötter.


6.4 Skogsproduktion och sårbarhet

Effekter av kalkning på skogsproduktion har sammanställts av Sikström m.fl. (2001). Effekterna verkar variera med produktivitet och medan tillväxtminskningar noterats i mindre produktiva tallbestånd har kalkningen i vissa fall resulterat i tillväxtökningar i mer produktiva tall- och granbestånd. I många fall förblir dock tillväxten opåverkad av kalkning. Några entydiga samband mellan tillväxt och typ eller dos av kalk har inte erhållits (Andersson m.fl., 1996). I dosförsöket följes tillväxten upp fram till sex år efter kalkningen, men där hade ingen dos eller kalktyp gett någon tillväxteffekt (Akselsson m.fl., 2000). Även i SKOKAL-områdena följes tillväxten upp, i detta fall 11-12 år efter kalkning, och inte heller där fanns några tecken på tillväxtförändringar (Anderson och Hildingsson, 2004). Inte heller i ett projekt där man testade låga kalkgivors (0,5-1 ton per hektar) effekt på tillväxten kunde några tillväxteffekter påvisas efter kalkning (Sikström, 1993). Till viss del verkar tillväxteffekter av kalkning likna dem som kan noteras efter askåterföring. Resultaten av askåterföring är dock inte direkt applicerbara på grund av att askan inte bara ökar markens pH (och därmed leder till en ökad om-
sättning av kväve) utan också innehåller fler näringsämnen än kalken, framförallt fosfor, vilket kan bidra till en ökad tillväxt på vissa marker (Thelin, 2006).

Även om kalken inte påverkar tillväxten skulle man kunna tänka sig att den kunde påverka trädens sårbarhet, antingen positivt eller negativt. Den ökade utlakning av baskatjoner som orsakats av försurningen skulle teoretiskt ha kunnat leda till en bristsituation för växterna (Schulze, 1989), eftersom baskatjonerna, utom natrium, också innehåller viktiga näringsämnen. Förändringar i pH-graderna skulle teoretiskt ha kunnat leda till en bristsituation för växterna (Schulze, 1989), eftersom baskatjoner, utom natrium, också innehåller viktiga näringsämnen. Under 1900-talet ökade dock tillväxten i Sveriges skogar kontinuerligt, även i de mest försurningsdrabbade länen, vilket tyder på att detta inte utgör något problem i dag (Lindroth, 1995; Elfving och Tegnhammar 1996). Baserat på tillgängliga data, bland annat halter av baskatjoner i barr, föreligger inte heller några ökningar i barrkemin, utan det finns istället tendenser till minskade kaliumhalter, som beror på att bakterier och andra organismer förlitar sig på bakterier för sina näringsbehov. Ett annat exempel är borbrist, som diskuterats som en eventuell effekt av kalkning, eftersom bor börjar övergå till en form som är otillgänglig för träden (Munthe m.fl., 2001). Effekter på barrkemin av kalkning är dock inte tydliga och generella. Förändringar har påvisats i halterna av exempelvis kalkium och magnesium, som ökat efter kalktillförsel, och bor och mangan, som minskat, bland annat i Skogs- förssks parcellförsök (Sikström, 2001). I dosförsöket påvisades vissa förändringar i barrkemin, främst i form av minskade kaliumhaltar, men i många fall var förändringarna små (Akselsson m.fl., 2000). Också i de gamla kalkningsförsökens är förändringar i näringsstillståndet i barr och blad efter kalkning varit liten, även om tendenser för att ökade upptag av kalkium och magnesium (Nihlgård m.fl., 1996a).

I SKOKAL-områdena studerades kronutglesning, missfärgning och kårflödesjuven, men inga tydliga skillnader återfanns mellan kalkade och okalkade områden (Anderson och Hildingsson, 2004).

I Västerbotten uppmarcksammades döda talltoppar i samband med upprepade och höga givor på våtmark. Träderna som drabbades fanns i anslutning till våtmarkerna, på döda torvmarker eller i bäcknära zoner och symptomen förklarades med borbrist (Johansson, 2002). Våtmarkskalkningen i Västerbotten utfördes med mycket höga givor, 20-30 ton per hektar initialt och därefter flera återkommande kalkningar med givor som beräknats baserat på genomströmningshastigheten (Johansson, 2004). Troligtvis har endast en liten del av givan nått de angränsande bestånden då det rört sig om felkalkningar eller vindavdrift (Johan Ahlström, Länsstyrelsen i Västerbotten, pers. komm.). Kalkningen har också skett i anslutning till områden med naturligt låga koncentrationer av bor, vilket gör att borbrist uppkommer redan vid små begränsningar i tillgängligheten (Johansson, 2004). Risken för borbrist efter kalkning i sydvästra Sverige torde vara försumbar beroende på att kalkningen inte kommer att ske på torvmark, pH-ökningen blir lägre (se stycke 4.2.1) och depositionen av bor högre (Gustafsson, 1997).

Rottickan (Heterobasidion annosum) är den ekonomiskt sett allvarligaste skadegöraren på gran i Sverige och omkring 15 % av granarna i södra och mellersta Sverige är infekterade av rotticka (Barklund, 2007). Risken för rötangrepp orsa-


6.5 Rörighet av tungmetaller

Skogsmarken har fungerat som en sänka för vissa föroreningar som förekommer eller förekommer i depositionen och därmed har lagren av vissa tungmetaller, exempelvis bly och kvicksilver, ökat. Markens pH påverkar lösligheten av ämnen och kalkning kan därför påverka risken för läckage (se litteratursammanställning i Munthe m.fl., 2001). Många metaller binder dessutom till organiskt material och till följd av detta spelar den ökad omsättningen av detta som kan uppkomma efter kalkning (se stycke 6.6) en viktig roll (Munthe m.fl., 2001). Vidare leder alla åtgärder som ökar lösligheten av organiskt kol till ökad mobilitet och transport av de flesta metaller. En viktig tungmetall i skogsbrukssammanhang är kvicksilver. Kväcksilver kan läcka från marken i form av organiskt bundet kvicksilver, som katjon eller giftigt metylkviksilver. Om metylkviksilver når ytavatten kan bioaccumulering ske i fisk och högre upp i näringskedjan, exempelvis hos fiskgjuse och människan.

Påverkan av skogsmarkskalkning på läckage av metylkviksilver studerades inom Movib (Bishop m.fl., 2008). Inga effekter kunde detekteras på kort sikt, dvs. upp till ett år efter kalkningen (Bishop m.fl., 2008). Data för alla områden fanns dock ännu inte tillgängliga när avrapporteringen gjordes. En eventuell ökad utlakning av kvicksilver efter skogsmarkskalkning borde också dröja eftersom kalken rör sig långsamt genom markprofilen (se stycke 4.2.1). Det är därför inte möjligt att i dagsläget avfärdna risken att skogsmarkskalkning kan påverka utlakningen av kvicksilver.

6.6 Utsläpp av växthusgaser

De tre gaser som står för den största delen av klimatförändringen är koldioxid, metan och lustgas. Skogsmark kan potentiellt utgöra en källa för alla dessa tre gaser genom att de kan produceras, men också konsumeras, av mikroorganismer som finns i mark. Eftersom kalkningen påverkar förhållandena för mikroorganis-
merna kan flödena av växthusgaserna påverkas. Effekterna på nettoflödet av växthusgaser mellan skogsmarken och atmosfären är dock antagligen små (se litteratursammanställning i Johansson m.fl., 1999).

Nedbrytningshastigheten av organiskt material i kalkade försök har studerats i laboratorium, genom mätningar av koldioxidavgång (Nilsson m.fl., 1996). Resultaten tyder på att nedbrytningshastigheten under det första året efter kalkning blir oförändrad för barrförna men ökar något för humus. Kalkdosen påverkar och effekten blev större med ökad kalkdos. Markens kolförråd har också studerats i de gamla kalkningsförsöken och resultaten indikerade att skogsmarkskalkning med givor på 3-20 ton per hektar kan leda till ökad nedbrytning i områden där man har en låg C/N-kvot i marken (se Nilsson m.fl., 1996 och litteratursammanställning i Johansson m.fl., 1999). Detta tyder på att koldioxidavväckningen skulle kunna öka vid kalkning i sydvästra Sverige där marken är kväverik.

Effekten av kalkningen på kolomsättningen studerades även inom Movib (Högbom m.fl., 2008). Skillnaderna i kolförråd i humus och mineraljorden ned till 20 cm djup var i de flesta fall ±10 % i områden där 1,55-8,75 ton kalk per hektar tillförs 14-37 år tidigare. I ett område i södra Sverige var kolförrådet 20 % lägre i det kalkade området jämfört med det okalkade. Inga skillnader i kolförråd var dock statistiskt signifikanta.

I de två parcellförsöken i Halland där även CO₂-respirationen på olika markdjup mättes minskade den genomsnittliga respirationshastigheten generellt med markdjup och den absoluta merparten av det avgivna kolet kom från förnaskiktet (Högbom m.fl., 2008). Respirationshastigheten i förnaskiktet skiljde sig inte signifikant mellan kalkade och okalkade områden i något av förövningen. I det ena försöket var respirationshastigheten högre från humusskiktet och de översta 20 cm av mineraljorden i kalkade områden och det fanns en tendens till att respirationen var större när 2 ton kalk tillförs per hektar än knappt 4 ton. I det andra området fanns en tendens till att respirationshastigheten ökade med ökande giva men endast respirationen vid den högsta givan (8,75 ton per hektar) skilde sig signifikant från den okalkade kontrollen.

När respirationen räknades om till fältförhållanden i de två Hallands-områdena kunde inga signifikanta skillnader uppmätas (Högbom m.fl., 2008). En förklaring kan vara att detta är ett resultat av förhöjd respirationshastigheten under de 23 år som gått sedan behandlingen och att det nu finns ett mindre kolförråd i marken på de kalkade ytorna jämfört med de okalkade.

Avgången av växthusgaser från marken har även mätts direkt i fält i andra studier. I ett försök i Tyskland, där C/N-kvoten i marken var låg och upp till 30 ton kalk tillsätts per hektar, påverkades inte koldioxidavväckningen från marken på lång sikt (Borken och Brumme, 1997). Koldioxidavväckningen är dock summan av rotproduction och nedbrytning och även om den totala koldioxidavväckningen inte påverkats kan omsättningen av organiskt material ha ökat om rotproductionen minskat. Ökningar i nedbrytningshastigheten så väl som minskningar i rotpromassa har observerats efter kalkning (se litteratursammanställning i Borken och Brumme, 1997) så detta är en möjlig förklaring. Respiration från rötter och associerade mikroorganismer har också visat sig minska efter kvävegödsling (Olsson m.fl., 2005) så om tillgången på kväve ökar efter kalkning (se stycke 6.3) kan detta förklara effekten.
7 Åtgärder för att begränsa negativa effekter

_Slutsats:_

_Sprid inte kalk på hyggen utan hyggesvegetation._

_Undvik områden med känslig flora och fauna som kan ta skada av kalkningen._

### 7.1 Heltäckande hyggesvegetation vid risk för kväveläckage

Trots att de studier som hittills genomförts indikerar att risken för ett ökat kväveläckage till ytvatten efter kalkning är relativt liten (se avsnitt 6.3) finns det anledning att visa särskild hänsyn vid kalkning i områden där C/N-kvoten kan antas vara låg (<25). Under en diskussion med expertgruppen framkom förslag på att kalk inte bör spridas på hyggen med låg C/N-kvot om inte en heltäckande hyggesvegetation etablerats eller ett trädskikt lämnats i samband med slutavverkning.

### 7.2 Undanta områden med känslig flora och fauna

Fastmarkskalkning med låga kalkgivor har visat sig ha relativt små effekter på vegetationen (se stycke 6.2). Under en diskussion med expertgruppen framkom att det därmed inte finns någon anledning att genomföra inventeringar av potentiella kalkningsobjekt före behandlingen. Däremot bör områden med dokumenterade naturvärden undantas om det finns en risk för att kalkningen kan påverka de skyddsvärda intressena. Exempel på sådana områden är nyckelbiotoper med kalk- eller kvävekänslig flora. Till sådana områden bör även ett skyddsavstånd hållas så att kalk med säkerhet inte hamnar inom dem.


Anledningar till att bäcknära zoner kanske borde undantas från kalkning baseras på att de ofta hyser värdefull flora och fauna. Dessutom försvinner kalken snabbt ifrån bäcknära zoner och ger därmed inte den avsedda mer långsiktiga effekten.
En uppföljning genomfördes dock av hur spridningen utförts i SKOKAL-områdena och det visade sig att kalk där spridits över hela bestånden (Stefan Anderson, Skogsstyrelsen, pers. komm.). Däremed verkar det troligt att den initiala positiva effekten som har påvisats efter kalkningen (se stycke 4.2.1) åtminstone delvis berodde på att kalk spridits i bäcknära zoner, och den effekten är önskvärd. Vidare visar studier att även påverkan på våtmarksfloran blir relativt liten vid låga kalkgivor (se stycke 6.2). Däremed drogs slutsatsen att det är bra om en spridningsfri zon på 20 meter hålls mot centralbäckar och större bäckarmar men att något generellt undantagande av bäcknära zoner inte behövs.
8 Uppföljning av spridning

**Slutsats:**

Metoder har tagits fram för att följa upp spridning och kalkprodukt.

Ett rimligt krav att ställa på spridningsjämnhet är att den uppmätta medelgivan bör hamna inom intervallet 2,5-3,5 ton per hektar samt att variationskoefficienten är ≤ 40 %.

Kalkprodukten bör testas i samband med att en ny entreprenör anlitas och spridningsjämnheten oftare, förslagsvis en gång i samband med varje spridningssäsong. Det viktigaste är dock att följa upp huruvida kalk har hamnat i undantagna områden. En sådan kontroll bör genomföras i samband med varje spridning som görs i anslutning till områden som undantagits av naturvårdsskäl.

Inom Movib utvecklades ett uppföljningssystem för den praktiska spridningen. Syftet med uppföljningen är att kontrollera huruvida spridningsentreprenören genomfört arbetet enligt uppsatta riktlinjer. De faktorer som bedömdes vara viktiga att följa upp var:

a. medelgiva samt spridningens jämnhet  
b. kalkens beskaffenhet m.a.p. kornstorlek och andel finsvans  
c. huruvida spridning skedde enligt spridningsplan

Kalkningen som genomfördes inom Movib följas upp i sju områden. Målgivna var i samtliga fall 3 ton kalk per hektar (se Hjerpe m.fl., 2008 för mer information).

### 8.1 Spridningsjämnhet

En metod för att följa upp spridningsjämnheten utvecklades. Den utvecklade metoden jämfördes med Skogforsks metod för uppföljning av skogsgödsling (Jacobsson m.fl., 2005) med avseende på tidsåtgång och användarvänlighet. I Skogforsks metod samlas kalken in i håvar som placeras på en linje tvärs över spridningsstråken.

#### 8.1.1 Metod för att bestämma spridningsjämnhet

Metoden för uppföljning som togs fram byggde på att en föryngringsyta valdes ut inom varje spridningsområde. Inom ytan slumpades en startkoordinat fram. Nio stycken block lades sedan ut systematiskt i ett kvadratförförband (rutnät) där förbandet (F) beräknades enligt:

\[ F (m) = \sqrt[9]{A} \]
där $A$ är hyggets areal. I varje block placerades nio ugnsformar i aluminium (~2,5 dm$^2$) ut med 10 meters mellanrum. Antalet uppsamlingskärl som behövdes bestämdes med hjälp av ett initialt fälttest till 81.

När kärlen placerades ut i fält togs hinder bort som annars skulle påverka hur mycket kalk som hamnade i kärlen (exempelvis grenar som täckte över delar av kärlen). Helikopterpiloten kontaktades när placeringen av kärlen var klar varefter spridningen påbörjades. Helikopterpiloten hade därmed kännedom om att uppföljningsverksamhet bedrevs. Kalken som hamnat i formarna vägdes och givan beräknades genom att massan kalk i varje kärl dividerades med uppsamlingsarean och omräknades till ton per hektar.

För att få ett mått på hur jämnt kalken spridits beräknades variationskoeficienten ($VK$). $VK$ är standardavvikelsen ($S$) för mätpunkterna i förhållande till medelgivan ($\overline{G}$), uttryckt i procent.

$$VK = S / \overline{G} \times 100\%$$

Som exempel innebär en $VK$ på 30 % att 2/3 av arealen tilldelas ± 30 % av den faktiska medelgivan.

Den inom Movib utvecklade metoden jämfördes med Skogforsks metod genom att de lades ut parallellt på en försöksyta. Under arbetets gång beräknades tidsåtgången. Efter spridningen samlades kärlen in för invägning och beräkning av medelgivan. Ett statistiskt test (t-test) användes för att kontrollera om medelgivorna beräknade med de olika metoderna skilde sig åt.

8.1.2 Utvärdering av kontroll av spridningsjämnhet

Både den metod som tagits fram inom Movib och Skogforsks metod bedöms ge ett tillräckligt stort stickprov. Detta innebär att den uppmätta medelgivan och $VK$ kan användas vid utvärdering av spridningsarbetet. En rimlig medelgiva vid helikopterspridning bör enligt uppföljningen kunna ligga i intervallet 2,5-3,5 ton per hektar och spridningsjämnheten uttryckt som $VK$ bör vara $\leq$ 40 %. Uppföljningar av spridningsjämnheten bedöms behövas i samband med varje ny spridningssäsong. Mer resultat från uppföljningen återfinns i stycke 9.1.2.

Det uppföljningssystem som tagits fram inom projektet fungerade i fält och de medelgivor som uppmättes skilde sig inte signifikant från dem som uppmättes med Skogforsks metod. Tidsåtgången var ungefär hälften så stor när Skogforsks metod användes och den var också lättare att arbeta med. Skogforsks metod erbjuder även en uppsamlingsyta som är ca 5 gånger större än ytan av 81 ugnsformar, vilket borde generera ett stabillare medelvärde. Dock kräver Skogforsks metod längre framförhållning vad gäller införskaftande av utrustning. Den inom Movib utvecklade metoden innebär också andra fördelar. Användningen av aluminiumformar gör att det är enkelt att bestämma provets torrvikt. En torkning av proverna före invägning kan vara nödvändig om kalkspridningen genomförs i samband med regn eller när luftfuktigheten är hög. Vidare finns möjligheten att arbeta med fuktad kalk om man vill bli av med finsvansen (se stycke 9.1.3) och även i detta fall kan kalken behöva torkas före invägning. Dock kan det finnas en risk för att
en viss del av kalken, framförallt grövre fraktioner, studsar ur insamlingskärlen eftersom ugnformarna har platt botten.

8.2 Siktanalys

Enligt upphandlingen för spridningen inom Movib skulle kalkmedlet ligga inom kornstorfleksintervallet 0,2-2,0 mm. Finsvansen, dvs. andel kalk med en kornstorflek under 0,2 mm, skulle utgöra max 10 % av vikten. Ett siktprov användes för bedömning om kalkprodukten klarade kraven.

8.2.1 Metod för att bestämma kornstorfleksfördelning

Kalk som samlats upp i behållare vid spridningsjämnhetsstudien (se stycke 8.1) användes efter torkning för att göra en kornstorfleksanalys. 136,6 gram kalk väggades in för analys. Provet skakades manuellt i en siksats med sju siktstorlekar (maskvidden 3:2:0,9:0,55:0,25:0,125 och 0,07 mm). För att kontrollera hur skakningstiden påverkade fraktionsfördelningen gjordes vägningar av varje fraktion efter 3, 5, 10 och 15 minuter.

8.2.2 Utvärdering av siktanalys

Kalken uppfyllde de krav som ställdes i upphandlingen och test av kalkens kvalitet bedöms därför enbart behövas i samband med att en ny entreprenör anlitas.

Metoden som utvecklades för att testa kalken anses fungera. Siktanalysen gav ett lättöverskådligt resultat som visade att det analyserade provet klarade de uppsatta gränsvärdena med maximalt 10 % finsvans och högst 2 mm stora partiklar (Figur 15). Skakning i 10 minuter räckte för att erhålla ett stabilt resultat (Figur 16). I den finaste fraktionen skedde fortfarande en viktöverföring mellan tiden 10 minuter och 15 minuter men den påverkade inte analysen av finsvans eftersom förändringar enbart skedde i de finare fraktionerna (under maskvidden 0,25 mm).

![Siktcurva efter skakning under 15 minuter. De röda linjerna visar gränsvärden för finsvansen.](image)

**Figur 15. Siktcurva efter skakning under 15 minuter. De röda linjerna visar gränsvärden för finsvansen.**
8.3 Spridningskontroll

En stickprovsundersökning utvecklades för att kontrollera att planlagda områden behandlats och att områden som undantagits från kalkning, exempelvis nyckelbiotoper och våtmarker, inte kalkats.

8.3.1 Metod för spridningskontroll

Tjugo besökspunkter lades ut slumpmässigt inom varje spridningsområde. GPS användes för att lokalisera punkterna i fält och en okulär kontroll av huruvida kalk fanns inom en radie av fem meter runt punkten genomfördes. En kontroll genomfördes också av undantagna områden. I denna prioriterades nyckelbiotoper och naturvärdesobjekt före områden med lägre naturvärden. Uppföljningen gjordes genom att områdets gränser först besiktades och därefter kontrollerades hela området för att skatta andelen av ytan som kalk hamnat på.

8.3.2 Uppföljning av spridningskontroll

Uppföljningen av om kalk hamnat i de områden som skulle behandlas genomfördes i totalt 140 punkter inom sju avrinningsområden. Det fanns kalk i 135 av dessa punkter. Totalt kontrollerades 30 undantagna områden (0,5-5 hektar stora) och i sex av dessa hade det hamnat kalk. Därmed bedöms en kontroll av huruvida kalk hamnat i undantagna områden behövas i samband med varje spridning som genomförs i anslutning till områden som är känsliga av naturvårdsskäl. Mer resultaten från uppföljningen presenteras i stycke 9.1.3.
9 Problem som kan uppkomma i samband med den praktiska spridningen

**Slutsats:**

På runt 40 % av skogsmarksarealen i sydvästra Sverige anses kalkspridningen kunna genomföras med markgående spridare. På resterande arealer krävs helikopterspridning. Helikopterspridning kan minska precisionen i spridningen och det är svårare att undanta små känsliga områden. Samtidigt är risken mindre för att mekaniska skador uppkommer på mark och träd.

Spridning av kalk med markgående spridare ställer högre krav på planläggningen än helikopterspridning.

Spridning med helikopter är dyrare än markspridning men förberedelsearbetet kostar mindre.

### 9.1 Problem vid helikopterspridning

#### 9.1.1 Logistik


I anslutning till områden som ska kalkas måste det finnas farbara vägar. Ju närmare spridningsområdet kalken kan förvaras desto kortare blir flygsträckan (och desto billigare spridningen).

Planering av spridningsområden bör ske med så lång framförhållning som möjligt. Detta skapar möjligheter att hitta billigaste transportlogistik, välja ut och förbereda lastplatser, ta fram nödvändigt kart- och planeringsunderlag och liknande. Ett allmänt önskemål från entreprenörer är också att upphandlingar görs med treårigt, eller längre, perspektiv för att skapa förutsägbarhet och möjligheter till investeringar och utveckling.

#### 9.1.2 Spridningsjämnhet

Medelgivan varierade mellan 1,67 och 3,66 ton per hektar i de sju områden där kalkningen följes upp (se stycke 8.1). Den totala medelgivan beräknat på alla avrinningsområden låg på 2,41 ton per hektar. När givan per hektar beräknades för enskilda formar varierade utfallet mellan 0 och 18 ton per hektar (Figur 17) och spridningsjämnheten, uttryckt som variationskoefficient, varierade mellan 39 % och 114 %.
Om det bedöms vara viktigt att kalken sprids jämnt inom området bör krav på detta ingå i upphandlingen. Målgivan bör i så fall kompletteras med gränsvärden för spridningsjämnhet (se stycke 8.1). Om produkten och spridningsmetoden anpassas borde det vara möjligt att uppnå samma spridningsjämnhet som vid kvävegödsling, dvs. en variationskoefficient på 20-30 % när en granulerad produkt och centrifugalspridare används. Detta skulle dock innebära en betydlig fördyring av kalkspridningen.

9.1.3 Kalk i undantagna områden

I uppföljningen visades att kalk kommit nästan överallt i de områden som skulle kalkas (135 av 140 punkter se stycke 8.3.2). Dock hade även sex av de 30 undantagna områdena som kontrollerades fått kalk på sig (se stycke 8.3.2). I ett fall handlade det om ett dammlager där givan ansågs vara så liten att den inte var mätbar och effekten därmed försvarbar. I två fall hade 1-4 % av undantagna delområden inom större områden fått kalk på sig. I två fall fanns kalk inom en 15 m zon längs kanten på de undantagna områdena - en nyckelbiotop och en betesmark. I det sista fallet hade nästan ett helt undantaget våtmarksområde blivit behandlat. Kalkmängden var dock mindre än i intilliggande område som skulle kalkas.

9.2 Problem vid markspridning

9.2.1 Åtkomst vid kalkspridning med markgående spridare

Markspridningen kan genomföras med större precision än helikopterspridning och mindre områden kan kalkas eller undantas. Samtidigt medför spridning från marken minskad åtkomst i planteringar, röjskogar, ogallrade bestånd, vid branta förhållanden, vid blöta förhållanden samt vid riklig förekomst av kultur- och fornlämningar. Med avseende på skogsmarkens fördelning på huggningsklasser samt markförhållanden som lutning och fuktighetsklass torde högst ca 40 % av den totala arealen kunna kalkas med markspridare (Hampus Holmström, Skogsstyrelsen, pers. komm.).

9.2.2 Skador vid kalkspridning med markgående spridare

Markspridning innebär även ökad risk för körskador på både träd och mark. Körskador på träd kan göra träden mer känsliga för skadeangrepp och markskador kan leda till ökade transporter av organiskt material och tungmetaller till vattendrag samt ökad risk för kväveutläckning.

För att undvika körskador i så stor utsträckning som möjligt bör markspridning genomföras i gallringsskog och så nära en föregående gallring att riset finns kvar på stickvägarna som skydd för rötter och rothalsar. Om spridningen sker lång tid efter gallring så ökar risken för skador på stammar och rötter och därmed också risken för angrepp av exempelvis rotticka. Förnyingsytorna kan också vara lämpliga för markspridning eftersom stam- och stamskador kan undvikas. Dock bör det finnas ett etablerad vegetation i områden som är kväverika för att inte risken för kväveläckage ska öka (se stycke 7.1). Markspridning bör undvikas i förnyingsytorna där planorna är högre än 50 cm i syfte att minska risken för skador på toppskotten. I röjningsskog är markspridning inget alternativ eftersom maskinen inte kan framföras utan att orsaka skador. Skaderisken i olika typer av bestånd (baserat på erfarenheter från askspridning) sammanfattas i Tabell 6.


<table>
<thead>
<tr>
<th>Låg skaderisk</th>
<th>Hög skaderisk</th>
</tr>
</thead>
<tbody>
<tr>
<td>nymark</td>
<td>ogallrat – gallrat för länge sedan</td>
</tr>
<tr>
<td>breda stickvägar</td>
<td>smala stickvägar</td>
</tr>
<tr>
<td>torra markförhållanden</td>
<td>blöta markförhållanden</td>
</tr>
<tr>
<td>planerat innan spridning</td>
<td>föraren planerar i samband med spridning</td>
</tr>
</tbody>
</table>


Dessutom ökar risken för skador på bilvägnätet genom en ökad transport av tunga fordon. Detta kan leda till ökade anspråk på ersättning från markägare / vägsämsförmögenhet vilket fördyrar åtgärden.
9.2.3 Ökade krav på planläggning

9.3 Jämförelse av pris för helikopter- och markspridning
Kalkprodukten och transport av kalk till spridningsområdena kostar lika mycket oavsett om kalken sprids via luften eller marken. Däremot skiljer sig både kostnaden för spridningen och kostnaden för planläggningen. Spridning av kalk med helikopter kostar i storleksordningen 650-750 kronor per ton (Ola Sterner, Airlift AB, pers. komm.) medan markspridningen ligger på 140-150 kronor per ton (Hampus Holmström, Skogsstyrelsen, pers. komm.). Planläggningen inför helikopterspridningen kostar runt 70 kronor per ton och planläggning av markspridning 100 kronor per ton (Hampus Holmström, Skogsstyrelsen, pers. komm.).
10 Slutsatser


Projektet har bidragit med mycket ny kunskap vilket gör att bättre svar kan ges på de frågor som listades i bakgrunden (se stycke 1.6). Nedan presenteras Skogsstyrelsens hållning i samband med att åtgärdsprogrammet togs fram, den kunskap som genererats sedan dess och de slutsatser som rapportförfattarna drar baserat på den nya kunskapen.

10.1 Är försurningsläget och återhämtningshastigheten i skogsmark sådant att det finns ett behov av åtgärder?

10.1.1 Behovet av åtgärder i åtgärdsprogrammet

När Skogsstyrelsens förslag på åtgärdsprogram togs fram år 2001 var surt avrinningsvatten från skogsmark ett problem och försurningseffekten i sydvästra Sverige troddes sannolikt bestå i upp emot 100 år (Skogsstyrelsen, 2001a). Skogsstyrelsen ansåg då att åtgärder borde sättas in för att påskynda återhämtningen av marker som hade en långsam och ofullständig återhämtning och att dessa framför allt var belägna i sydvästra Sverige. Skogsstyrelsen gjorde bedömningen att det på kort sikt inte förelåg något överhängande behov av åtgärder på grund av försurningsrelaterade skador på den terrestra biologiska mångfalden eller på trädens produktion eller vitalitet. Målet för åtgärderna uttrycktes därmed som att skogsmarkens läckage av aluminium och vätejoner till yt- och grundvatten långsiktigt skulle minska till nivåer som inte gav upphov till skador på den biologiska mångfalden i vattenekosystemet (Skogsstyrelsen, 2001a). Detta förväntades uppnås genom att återhämtningen från antropogen försurning i mark, mindre sjöar och vattendrag i sydvästra Sverige skulle påskyndas (se stycke 2.1).

Inom åtgärdsprogrammet föreslogs att kriterier för oacceptabelt höga aluminium- och vätejonskonzentrationer skulle utvecklas. Även verktyg för att identifiera avrinningsområden som var i behov av åtgärder på grund av otillfredsställande återhämtning skulle tas fram, samt kriterier för områden där försurning var naturlig och där åtgärder därmed inte skulle vidtas (Skogsstyrelsen, 2001a).

10.1.2 Ny kunskap om behovet av åtgärder

Sedan åtgärdsprogrammet formulerades har Naturvårdsverket utvecklat nya bedömningsgrunder för halter av oorganiskt aluminium i ytvatten (Fölster, 2007). Gränser för höga halter går vid 50 μg per liter (se stycke 1.5) och skulle därmed kunna användas som ett riktvärde för skadlig halt. Den studie av oorganiskt alu-
minium och vattendrag som genomfördes inom Movib visar dock att halter på 50 μg per liter och över kan förekomma på många håll utanför sydvästra Sverige och därmed inte utgör en indikator för depositionsbetingad försurning (se stycke 3.3). Vidare har pH i ytvatten visats vara en bättre indikator för påverkan på biota än oorganiskt aluminium och den gräns som satts för antropogen påverkan är en pH-sänkning i ytvatten på 0,4 enheter jämfört med tillståndet 1860 (se stycke 1.2). Detta mätt skulle således spegla förändringen bättre än ett absolut mätt för aluminiumhalt, men är svårare att fastställa för enskilda avrinningsområden.

I samband med den fördjupade utvärderingen av miljökvalitetsmålet ”Bara naturlig försurning” kartlades surhet och återhämtning i skogsmark (se stycke 3.1). Resultaten visade att det trots att skogsmarken återhämtat sig fortfarande finns stora arealer sur skogsmark i sydvästra Sverige. Det bör dock poängteras att sur skogsmark inte är synonymt med försurad. Modelleringssättet indikerar att markens framtid återhämtning kommer att gå långsamt, i varje fall så länge skogsbruk bedrivs (se stycke 3.1). Det finns också en hel del ytvatten som fortfarande är försurade. I den fördjupade utvärderingen av ”Bara naturlig försurning” anges att 3 % av de sjöar som inte kalkas är försurade och 5 % av andelen rinnsträcka (se avsnitt 3.2). I den studie av oorganiskt aluminium i mindre skogsvattendrag som genomfördes inom Movib visades att höga koncentrationer av oorganiskt aluminium var vanligt förekommande i vattendrag med avrinningsområden mindre än 500 ha (se stycke 3.2). Den modellering som gjorts inom Movib indikerar att återhämtningen av pH i ytvatten inte kommer att bli fullständig (se stycke 3.2) medan halterna av oorganiskt aluminium på de flesta håll däremot kommer att sjunka under 50 μg per liter inom de kommande 25-30 åren (se stycke 3.2). Skogsbruk kan dock inverka negativt på återhämtningen av ytvattnet, speciellt helträdssuttag utan kompenserande askåterföring men även konventionellt stamvedsuttag hämmer återhämtningen.

10.1.3 Författarnas slutsatser angående behovet av åtgärder

Den nya kunskap som framkommit sedan Movib startades stödjer den tidigare uppfattningen att markens återhämtning från försurning tar lång tid. Däremot indikerar resultaten att behovet av långsiktiga åtgärder för att påskynda återhämtningen av ytvattenkemin är mindre än vad man tidigare trott. Även om pH i ytvattnet inte återgår till förindustriella förhållanden kommer koncentrationerna av oorganiskt aluminium troligtvis i många fall att sjunka under 50 μg per liter inom några decennier utan åtgärder. Detta gäller under förutsättning att ett försurande skogsbruk inte bedrivs. Mot bakgrund av denna positiva utveckling anses inte långsiktiga åtgärder i syfte att påskynda ytvattnets återhämtning från försurning behövas. Däremot är åtgärder för att motverka skogsbrukets försurning viktiga.

10.2 Ger skogsmarkskalkning önskad effekt på mark- och vattenkemin?

10.2.1 Effekten av skogsmarkskalkning i åtgärdsprogrammet

I åtgärdsprogrammet föreslogs en tillförsel av 3 ton kalkverkan per hektar i form av 2 ton aska och 2 ton kalk eller andra produkter med lämplig kvalitet (Skogssty-
Man hänvisade till studier som visat att den metoden hade positiva effekter på ytliga marklager och till modellberäkningar som visade att effekter skulle uppnås i ytvatten efter något till några decennier. Det fanns inga försök som följts tillräckligt länge för att se om de teoretiska långsiktiga effekterna skulle uppnås.

10.2.2 Ny kunskap om effekten av skogsmarkskalkning

Sedan åtgärdsprogrammet skrevs har vidare uppföljningar av mängden kalk som behövs för att kompensera för den sura depositionen samt effekter på vattenkemin i kalkade områden gjorts (se avsnitt 4). En tillförsel av 3 ton kalkverkan beräknas teoretiskt kunna kompensera för den antropogena sura depositionen på de flesta håll (se stycke 4.1), men beräkningar av den totala utbytbara aciditeten som gjordes inom Movib visar att kalkmängden i många fall inte räcker till för att höja markens pH över 5-5,5, under vilket mängden utbytbart aluminium ökar påtagligt (se stycke 4.2.1). Däremed är en tillförsel av 3 ton kalk per hektar i många fall inte tillräckligt för att reducera halterna av oorganiskt aluminium i ytvatten till nivåer under 50 μg per liter (se stycke 4.2.1).

Studier visar att skogsmarkskalkning med en giva på 3 ton per hektar ger en effekt på markkemin, inledningsvis i de översta markskikten och på längre sikt även djupare ned i marken (se stycke 4.2.1). I transektstudien som genomfördes inom Movib följdes vissa av SKOKAL-områdena upp 16 år efter kalkningen och grundvattenkemin hade påverkats ned till åtminstone 50 cm markdjup i delar av områdena (se stycke 4.2.1). Effekterna var dock små och återfanns inte alltid i alla delar av områdena. En snabb initial effekt på ytvatten, troligtvis orsakad av att kalk hamnat i utströmningsonområden, har i många fall uppstått i direkt anslutning till kalkningen (se stycke 4.2.1). Det finns också indikationer på att en pH-höjning kvarstår efter den initiala effekten. Detta gäller i såväl SKOKAL-områdena, där en giva på 3 ton kalk användes, som i Nissadalen, där en giva på 4 ton kalk och 2 ton aska tillfördes fastmarken (se stycke 4.2.1). I den fördjupade utvärderingen av data från SKOKAL-områdena och okalkade referensområden undersöcktes huruvida trenderna för försurningsrelaterade parametrar var monotont ökande eller minskande. Resultaten indikerade att återhämtning i vattenkemin på längre sikt var lika vanligt förekommande och lika snabba i okalkade områdena som i kalkade (se stycke 4.2.1). Metoden innebär dock att eventuella effekter som kvarstår efter de initiala kortvariga och större effekterna inte räknas in.

10.2.3 Författarnas slutsatser angående effekten av skogsmarkskalkning

Studierna som genomförts visar att en kalktillförsel på 3 ton per hektar ger en effekt på markkemin. Snabba initiala effekter på ytvatten har också uppkommit som ett resultat av skogsmarkskalkning men effekten inte är tillräckligt stor för att kunna sänka koncentrationerna av oorganiskt aluminium under 50 μg per liter. Däremot är det möjligt att kalkningen kan bidra till att halterna av oorganiskt aluminium snabbare hamnar under gränsen för extremt höga nivåer (dvs. 150 μg per liter). I pH-intervallet 4,6 till 5,4 kan även små pH-förändringar vara avgörande för att halten toxiskt oorganiskt aluminium ska öka (Fölster, 2007).

Genom att prognosen för naturlig återhämtning ser bättre ut nu än 2001 blir behovet av långsiktiga åtgärder i syfte att påskynda återhämtningen, så som skogs-
markskalkning, betydligt mindre. Det finns därmed inga skäl för att initiera en storskalig skogsmarkskalkning. Däremot kan åtgärden vara motiverad i områden där halterna av oorganiskt aluminium i ytvattnet är höga och våtmarks- eller yt-vattenkalkning av någon anledning är olämpliga åtgärder. Om kalk tillförs i större mängder än 3 ton per hektar kan effekten på mark- och vatten bli större.

10.3 Är skogsmarkskalkning en kostnadseffektiv åtgärd?

10.3.1 Skogsmarkskalkningens kostnad i åtgärdsprogrammet

I åtgärdsprogrammet diskuterades inte skogsmarkskalkningens kostnadseffektivitet (Skogsstyrelsen, 2001a). Däremot lyftes behovet av en samhällsekonomisk konsekvensanalys i den projektplan som Naturvårdsverket och Skogsstyrelsen enades om.

10.3.2 Ny kunskap om skogsmarkskalkningens kostnadseffektivitet

I den samhällsekonomiska konsekvensanalys som genomfördes för skogsmarkskalkning testades tre olika scenarier för skogsmarkskalkningens effekt. För att skogsmarkskalkning genom markspridning skulle bli samhällsekonomiskt lönsamt måste de värden åtgärden ger upphov till överstiga 2 100 kronor för det optimistiska scenariet och 19 500 kronor för mellanscenariet (se stycke 5.1). Det optimistiska scenariet ansågs inte vara realistiskt och i och med att markspridning enbart är möjligt på runt 40 % av den totala skogsmarksarealen i sydvästra Sverige blir den egentliga kostnaden, och därmed det värdet som nyttan måste ha, ännu högre (se stycke 5.1).

10.3.3 Författarnas slutsats angående kostnadseffektivitet


Det torde finnas omständigheter som gör skogsmarkskalkning, och dess effekter, kostnadseffektiva. Ett exempel kan vara ett område med flera mindre vattendrag som värdesätts högt, där det inte finns någon våtmark som lämpar sig för våtmarkskalkning, där skogsmarkskalkning kan genomföras med traktor och där förhållandena skulle gynnas av ett högre pH enligt det mönster som uppvisats i flera kalkade områden. En värdering av nyttan görs i sådana fall bäst av en kommun eller länsstyrelse som har kunskap om de lokala förhållandena.
10.4 Kan kalkningen ha negativa bieffekter som gör åtgärden olämplig?

10.4.1 Negativa bieffekter av skogsmarkskalkning i åtgärdsprogrammet

I åtgärdsprogrammet angavs att fastmarkskalkning med en långsamlöslig produkt tillförd i en mängd av motsvarande 3 ton kalkverkan per hektar hade begränsade negativa bieffekter (Skogsstyrelsen, 2001a). Högre doser eller mer lättlösliga produkter angavs medföra snabbare effekter men också större risker för negativa effekter på flora och fauna samt näringsutlakning från marken. Mer kunskap ansågs dock behövas om områden som bör undantas från kalkning av hänsyn till den terrestra floran och faunan, områden där risken för nitratutlakning är hög samt effekten av kalkning på rörligheten av metaller, främst kvicksilver.

10.4.2 Ny kunskap om skogsmarkskalkningens negativa bieffekter

Även de studier som genomförts sedan åtgärdsprogrammet skrevs indikerar att risken för negativa effekter är tämligen små vid en tillförsel av 3 ton kalk per hektar (se avsnitt 6). En tillförsel av 3 ton kalk har inte gett upphov till några surstötter (se stycke 6.1) och när områden i sydvästra Sverige kalkats med 3 ton kalk har inte heller koncentrationerna av nitrat i ytvatten ökat i någon stor utsträckning (se stycke 6.3). Däremot drogs slutsatsen att kalk inte bör spridas på hyggen utan markvegetation av försiktighetsskäl (se stycke 7.1). Det finns fortfarande inga belägg för att kalkningen skulle ge några påtagliga effekter på tillväxten eller trädens näringsinnehåll, varken positiva eller negativa (se stycke 6.4).

Inom Movib finansierades uppföljning av effekter på markvegetation efter kalkning samt en studie om effekter på mykorrhiza (se stycke 6.2). Risken för att en tillförsel av 3 ton kalk per hektar skulle orsaka skador på floran och faunan verkar vara liten. Inte ens större doser (4 ton kalk + 2 ton aska) har påverkat markfloran, varken på kort eller på lång sikt (se stycke 6.2). Inom Movib studerades också effekter på mykorrhiza men inte heller i detta fall återfanns några mer drastiska och påtagliga förändringar (se stycke 6.2).

En studie om läckage av metylkvicksilver finansierades och resultaten visade att läckaget åtminstone inte ökar på kort sikt (se stycke 6.5). Fortsatt uppföljning behövs dock eftersom effekter kan uppstå med tiden då kalken tränger djupare ned i marken. Avslutningsvis finansierades en studie om vilken effekt kalkningen kan ha på markens kollager (se stycke 6.6). Effekterna varierade mycket, ibland var kollagren större i kalkade än i okalkade områden och ibland mindre, men inte i något fall var skillnaderna signifikanta.

10.4.3 Författarnas slutsats angående skogsmarkskalkningens negativa bieffekter

Negativa bieffekter verkar inte vare ett problem vid så låga givor som 3 ton per hektar. Om däremot högre givor än 3 ton per hektar börjar diskuteras bör man förstå fundera på vilka negativa effekter, främst på markvegetation, som är acceptabla.
10.5 Hur kan skogsmarkskalkning genomföras praktiskt?

10.5.1 Praktisk spridning i åtgärdsprogrammet

I åtgärdsprogrammet angavs att en relativt omfattande praktisk verksamhet skulle bedrivas under förberedelsefasen för att utveckla verkttyg för det praktiska genomförandet (Skogsstyrelsen, 2001a). Huvudmetoden för åtgärden som föreslogs i åtgärdsprogrammet var en blandning av aska och kalk (2 + 2 ton).


10.5.2 Ny kunskap om praktisk spridning

Sedan åtgärdsprogrammet skrevs har askåterföringen i södra Sverige ökat i omfattning och när behandlingen inom projektet skulle genomföras fanns en funge rande marknad för askåterföring. Efterfrågan på aska var större än tillgången vil ket innebar att en användning av aska inom projektet skulle öka konkurrenens om en redan begränsad resurs. Vidare betalar markägaren i vissa fall för återföring av aska som kompen sation för uttag av avverkningsrester och det innebar ett pedagogiskt problem att markägare vars skogsmark skulle behandlas inom projektet skulle få askan gratis. Med anledning av detta beslutades att det inte var lämpligt att blanda askan och kalken och genomföra spridningen med hjälp av statlig finansiering. Ytterligare en aspekt som gjorde att idén frångicks var att det innebar en fördyring att blanda kalk och aska jämfört med att sprida produkterna var för sig. Förutom att en kostnad tillkommer för blandningen blir det dyttare att med helikopter sprida 4 ton material per hektar i stället för 3. En preliminär beräkning genomförd av spridningsentrepreneuren visade att det skulle bli billigare att näringsberika kalken och tillsätta baskatjoner och fosfor motsvarande vad som finns i 2 ton aska än att sprida ett extra ton per hektar med helikopter (Bengt Epperlein, SMA Mineral Logistik & Entreprenad, pers. komm.).

För den spridning som genomfördes inom Movib arbetade man i stället enligt principen att aska skulle spridas i de delar av avrinningsområdet som kunde markspiras medan övriga delar behandlades med kalk som spreds via helikopter. Inte heller denna metod visade sig fälla väl ut. Genom att det rådde en brist på aska var det svårt att få askspridning genomförd i de avrinningsområden som Skogsstyrelsen valt ut för behandling och i vissa fall har askåterföringen ännu inte genomförts när denna rapport skrivs (Hjerpe m.fl., 2008).

Urvalet av områden som skulle behandlas inom Movib skedde tillsammans med länsstyrelserna i de olika regionerna och därmed samordnades skogsmarkskalkningen med ytvattenskalkning. Vissa länsstyrelser fick då även frågan om de kunde tänka sig att sprida kalk på våtmarker i avrinningsområdena för att komplettera skogsmarkskalkningen. Det ansågs dock inte lämpligt att ta nya våtmarker i an språk för kalkningsåtgärder av naturvårdsskäl. Detta hindrar dock inte att områden där våtmarker tidigare kalkats prioriteras i urval av områden för åtgärder.
Vad gäller behandling av våtmarker har låga doser (4 ton kalk + 2 ton aska) visats vara relativt oproblematiska för markvegetationen (se stycke 6.2). Risken för skador vid en tillförsel av 3 ton kalk per hektar borde därmed vara liten. I SKOKAL-områdena där en initial effekt av kalken uppkom kort efter tillförseln ansågs denna bero på kalken som hamnat i utströmningsområden (se stycke 4.2.1) Därför drogs slutsatsen att utströmningsområden och bäcknära zoner inte generellt behöver undantas från kalkning (se stycke 7.2).

Genom den spridning som genomfördes inom Movib ökade kunskapen om begränsningar med helikopterspridning, exempelvis att små områden visade sig vara svåra att undanta (se stycke 9.1.1 och 9.1.3). Samtidigt är risken för mekaniska skador större vid markspridning (se stycke 9.2.2) vilket innebär ökade krav på planläggning (se stycke 9.2.3).

System för uppföljning av kalkning togs fram eller testades inom Movib (se avsnitt 8). Baserat på de uppföljningar som genomfördes drogs slutsatsen att spridningsjämnheten bör testas en gång per spridningssäsong (se stycke 8.1), kalkproduktens storlek när en ny entreprenör anlitas (se stycke 8.2) och huruvida kalk hamnat i undantagna områden i samband med alla spridningar i anslutning till bestånd som undantagits av naturvårdsskäl (se stycke 8.3).

10.5.2 Författarnas slutsats angående praktisk spridning

Baserat på den kunskap som tagits fram inom Movib har en vägledning för skogsmarkskalkning tagits fram (Anderson m.fl., 2008). I denna finns information om allt från kontakt med markägare, upphandling av kalk och uppföljning av spridningen i fält. I kombination med bakgrunden som presenteras i denna rapport utgör vägledningen en sammanställning av kunskap som behövs för att spridning ska kunna fungera praktiskt.
11 Litteratur/källförteckning


från Naturvårdsverkets försöksverksamhet. (Eds. Staaf m.fl.). Rapport 4559, Naturvårdsverket, Stockholm.


Butterbach-Bahl K., Papen H. (2002) Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant and Soil 240: 77–90.


Gustafsson M.E.R. (1997) Raised levels of marine aerosol deposition owing to increased storm frequency; a cause of forest decline in southern Sweden? Agricultural and Forest Meteorology 84: 169-177.


gram för kalkning och vitaliseringsgödsling av skogsmark. Rapport B 1343, IVL Svenska Miljöinstitutet AB, Aneboda.


<table>
<thead>
<tr>
<th>År</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988:1</td>
<td>Mallar för ståndortsbonitering; Lathund för 18 län i södra Sverige</td>
</tr>
<tr>
<td>1988:2</td>
<td>Grusanalys i fjäll</td>
</tr>
<tr>
<td>1990:1</td>
<td>Täortsnära skogsbruk</td>
</tr>
<tr>
<td>1990:2</td>
<td>ÖSI: utvärdering av effekter mm</td>
</tr>
<tr>
<td>1991:1</td>
<td>Skogsskadador i Sverige 1990</td>
</tr>
<tr>
<td>1991:2</td>
<td>Contorrarapporten</td>
</tr>
<tr>
<td>1991:3</td>
<td>Participation in the design of a system to assess Environmental Consideration in forestry</td>
</tr>
<tr>
<td>1991:4</td>
<td>Tätortsnära skogsbruk</td>
</tr>
<tr>
<td>1991:5</td>
<td>ÖSI; utvärdering av effekter mm</td>
</tr>
<tr>
<td>1991:6</td>
<td>Utvärdering av studiekampanjen Rikare Skog</td>
</tr>
<tr>
<td>1991:7</td>
<td>Skoglig geologi</td>
</tr>
<tr>
<td>1991:8</td>
<td>Organisationens Dolda Resurs</td>
</tr>
<tr>
<td>1991:9</td>
<td>Skogsskadador i Sverige 1992</td>
</tr>
<tr>
<td>1992:1</td>
<td>Nyckelbiotoper i skogarna vid våra sydligaste fjäll</td>
</tr>
<tr>
<td>1992:2</td>
<td>Skogsmarkskalkning – Resultat från en fjärilts försöksperiod samt förslag till åtgärdsprogram</td>
</tr>
<tr>
<td>1992:3</td>
<td>Betespräglad äldre bondeskog – från naturvårdsbyggnad</td>
</tr>
<tr>
<td>1992:4</td>
<td>Seminarier om Naturhållsym i gallring i januari 1993</td>
</tr>
<tr>
<td>1992:5</td>
<td>Förbättrad sysselsättningstatistik i skogbruket – arbetsgruppens slutrapport</td>
</tr>
<tr>
<td>1992:6</td>
<td>EG/EU och EES-avtalet ur skoglig synvinkel</td>
</tr>
<tr>
<td>1992:7</td>
<td>Hur upplever ”grönt utbildade kvinnor” sin arbets situation inom skogsårsorganisationen?</td>
</tr>
<tr>
<td>1992:8</td>
<td>Renewable Forests - Myth or Reality?</td>
</tr>
<tr>
<td>1993:1</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:2</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:3</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:4</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:5</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:6</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:7</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:8</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1993:9</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:1</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:2</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:3</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:4</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:5</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:6</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:7</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:8</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1994:9</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:1</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:2</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:3</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:4</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:5</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:6</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:7</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:8</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1995:9</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:1</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:2</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:3</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:4</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:5</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:6</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:7</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:8</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1996:9</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:1</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:2</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:3</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:4</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:5</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:6</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:7</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:8</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1997:9</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:1</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:2</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:3</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:4</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:5</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:7</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:8</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1998:9</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:1</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:2</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:3</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:4</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:5</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:6</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:7</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:8</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
<tr>
<td>1999:9</td>
<td>Skogsskadador i Sverige 1993</td>
</tr>
</tbody>
</table>
2004:4 Naturlig föryngring av tall
2004:5 How Sweden meets the IPF requirements on npf
2004:6 Synthesis of the model forest concept and its application to Vilhelmina model forest and Barents model forest network
2004:7 Vedlevande arters krav på substrat - sammanställning och analys av 3,600 arter
2004:8 EU-utvidgningen och skogsindustrin - En analys av skogsindustrins betydelse för de nya medlemsländernas ekonomier
2004:9 Nytt nummer se 2005:1
2004:10 Om virkesförrådets utveckling och dess påverkan på skogsbruksets lönsamhet under perioden 1980-2002
2004:11 Naturskydd och skogligt genbevarande
2004:12 När vi skogspolitikens mångfaldsmål på artnivå? - Åtgärdsförslag för uppföljning och metodutveckling
2005:1 Access to the forests for disabled people
2005:2 Tillgång till naturen för människor med funktionshinder
2005:3 Besöksstudier i naturområden - en handbok
2005:4 Visitor studies in natureareas - a manual
2005:5 Skogshistoria år från år 1177-2005
2005:6 Vägar till ett effektivare samarbete i den privata tätortsnära skogen
2005:7 Planering för rekreation - Grön skogsbruksplan i privatägd tätortsnära skog
2005:8 Report from Proceedings of ForestSAT 2005 in Borås May 31 - June 3
2005:9 Sammanställning av stormskador på skog i Sverige under de senaste 210 åren
2005:10 Frivilliga avsättningar - en del i Miljökvalitetsmålet Levande skogar
2005:11 Skogliga sektorsmål - förutsättningar och bakgrundsmaterial
2005:12 Målbilder för det skogliga sektorns mål - hur går det med bevarandet av biologisk mångfald?
2005:13 Ekonomiska konsekvenser av de skogliga sektorns målen
2005:14 Tio skogsägares erfarenheter av stormen
2005:15 Uppföljning av skador på fornlämningar och övriga kulturlämningar i skog
2005:16 Mykorrhizasvampar i örtrika granskogar - en metodstudie för att hitta värdefulla miljöer
2005:17 Forskningsseminarium skogsbruk - rennäring 11-12 augusti 2004
2005:18 Klassning av renbete med hjälp av ståndortsboniteringens vegetationstypsindelning
2005:19 Jämförelse av produktionspotential mellan tall, gran och björk på samma ståndort
2006:1 Kalkning och askspridning på skogsmark - redovisning av arealer som ingått i Skogsstyrelsens försöksverksamhet 1989-2003
2006:3 Överensstämmer anmält och verkligt GROT-uttag?
2006:4 Klimathotet och skogens biologiska mångfald
2006:5 Arenor för hållbart brukande av landskapets alla värden - begreppet Model Forest som ett exempel
2006:6 Analys av riskfaktorer efter stormen Gudrun
2006:7 Risikohantering i skogsbruket
2006:8 Granbarkborrens utnyttjande av vindfällen under första sommaren efter stormen Gudrun - (The spruce bark beetle in wind-felled trees in the first summer following the storm Gudrun)
2006:9 Ekonomiska och sociala konsekvenser av stormen Gudrun - än nu inte klar
2006:10 Skogsägare och samhälle - en litteraturöversikt
2006:11 Översikt över den kulturhistoriska verksamheten i skogsmarken
2006:12 Ekonomiska konsekvenser för den skogliga sektorn
2006:13 Ekonomiska konsekvenser för hela skogsområdet
2006:14 Ekonomiska och sociala konsekvenser av stormen Gudrun - än nu inte klar
2006:15 Trädvård - en litteraturöversikt
2006:16 Regionala produktionsanalys - konsekvenser av miljöambitioner i Dalarnas län
2006:17 Förråds analyse av jordbruks activiteter
2006:18 Regional produktionsanalys - konsekvenser av miljöambitioner i Gävleborgs län
2006:19 Regional produktionsanalys - konsekvenser av miljöambitioner i Västernorrlands län
2006:20 Ekonomisk produktionsanalyser av skogsmarken
2006:21 Biomassaförsörjning i regioner
2006:22 Ekonomiska och sociala konsekvenser avstormen Gudrun
2006:23 Ekonomiska konsekvenser för den skogliga sektorn
2006:24 Ekonomiska konsekvenser för hela skogsområdet
2006:25 Ekonomiska konsekvenser för hela skogsområdet
2006:26 Ekonomiska konsekvenser för hela skogsområdet
2006:27 Ekonomiska konsekvenser för hela skogsområdet
2006:28 Ekonomiska konsekvenser för hela skogsområdet
2006:29 Ekonomiska konsekvenser för hela skogsområdet
2006:30 Ekonomiska konsekvenser för hela skogsområdet
2006:31 Ekonomiska konsekvenser för hela skogsområdet
2006:32 Ekonomiska konsekvenser för hela skogsområdet
2006:33 Ekonomiska konsekvenser för hela skogsområdet
2006:34 Ekonomiska konsekvenser för hela skogsområdet
2006:35 Ekonomiska konsekvenser för hela skogsområdet
2006:36 Ekonomiska konsekvenser för hela skogsområdet
2006:37 Ekonomiska konsekvenser för hela skogsområdet
2006:38 Ekonomiska konsekvenser för hela skogsområdet
2006:39 Ekonomiska konsekvenser för hela skogsområdet
2006:40 Ekonomiska konsekvenser för hela skogsområdet
<table>
<thead>
<tr>
<th>År</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007:8</td>
<td>Svenskt skogsbruk möter klimatförändringar</td>
</tr>
<tr>
<td>2007:9</td>
<td>Uppföljning av skador på fornlämningar i skogsmark</td>
</tr>
<tr>
<td>2007:10</td>
<td>Utgör kvävegödning av skog en risk för Östersjön? Slutsatser från ett seminarium anordnat av Baltic Sea 2020 i samarbete med Skogsstyrelsen</td>
</tr>
<tr>
<td>2008:1</td>
<td>Arenas for Sustainable Use of All Values in the Landscape - the Model Forest concept as an example</td>
</tr>
<tr>
<td>2008:2</td>
<td>Samhällsekonomin konsekvensanalys av skogsmarks- och ytvattenkalkning</td>
</tr>
<tr>
<td>2008:3</td>
<td>Mercury Loading from forest to surface waters: The effects of forest harvest and liming</td>
</tr>
<tr>
<td>2008:4</td>
<td>The impact of liming on ectomycorrhizal fungal communities in coniferous forests in Southern Sweden</td>
</tr>
<tr>
<td>2008:5</td>
<td>Långtidseffekter av kalkning på skogsmarkens kol- och kväveförråd</td>
</tr>
<tr>
<td>2008:6</td>
<td>Underlag för en nationell strategi för skötsel och skydd av sumpskogar</td>
</tr>
<tr>
<td>2008:7</td>
<td>Regionala analyser</td>
</tr>
<tr>
<td>2008:8</td>
<td>Frötäkt och frötäktsområden av gran och tall i Sverige</td>
</tr>
<tr>
<td>2008:9</td>
<td>Vägledning vid skogsmarkskalkning</td>
</tr>
<tr>
<td>2008:10</td>
<td>Områden som skogsmarkskalkats inom Skogsstyrelsens försöksverksamhet 2005-2007</td>
</tr>
<tr>
<td>2008:11</td>
<td>Inventering av ädellövplanteringar på stormhyggen från 1999 i Skåne</td>
</tr>
<tr>
<td>2008:12</td>
<td>Aluminiumhalter i skogsbäckar och variationen med avrinningsområdenas egenskaper</td>
</tr>
<tr>
<td>2008:13</td>
<td>Åtgärder för ett uthålligt brukande av skogsmarken - resultat från studier finansierade inom Movib</td>
</tr>
<tr>
<td>2008:14</td>
<td>Användningen av växtskyddsmedel inom skogsbruket</td>
</tr>
<tr>
<td>2008:15</td>
<td>Skogsmarkskalkning</td>
</tr>
</tbody>
</table>
Av Skogsstyrelsen publicerade Meddelanden:

1991:2 Vägplan -90
1991:3 Skogsåldersorganisationens uppdragsverksamhet – Efterfrågade tjänster på en öppen marknad
1991:5 Ekologiska effekter av skogsbränsleuttag
1992:1 Svanahuvudsvägen
1992:2 Transportformer i väglöst land
1993:2 Virkesbalanser 1992
1993:3 Uppföljningen av 1991 års lövträdsplantering på åker
1993:4 Återväxttaxeringarna 1990-1992
1994:1 Plantinventering 89
1995:2 Gallringundersökning 92
1995:3 Kontrolltaxering av nyckelbiotoper
1996:1 Skogsstyrelsens anslag för tillämpad skogsproduktionsforskning
1997:1 Naturskydd och naturhänsyn i skogen
1997:2 Skogsåldersorganisationens årssamtal 1996
1998:1 Skogsåldersorganisationens Utvärdering av skogsuttag
1998:2 Skolgula aktörer och den nya skogsstyrelsen
1998:3 Förebyggningsförebyggelse och skogsbiolvägar
1998:4 Miljöhänsyn vid förebyggning avverkning - Delresultat från Polytax
1998:5 Bestämsläggning
1998:6 Naturskydd och miljöarbete
1998:9 Skadeföremåten beträffande fasta fornämning och övriga kulturmiljövärden
1998:10 Produktionskonsekvenser av den nya skogsstyrelsen
1998:11 SMILE - Uppföljning av sumpskogsätt
1998:12 Skoter vi idélovskojen? - Ett projekt inom SMILE
1998:13 Riksdagens skogs- och skogspolicy - Åtgärder Villmark och folkets rätt
1998:14 Swedish forest policy in an international perspective. (Utfört av FAO)
1998:15 Produktion eller miljö. (En mediaundersökning utförd av Göteborgs universitet)
1998:16 De trädebruksimpedumentens betydelse som livsmiljö för skogselevande växt- och djurarter
1998:17 Verksamhet inom Skogsåldersorganisationen som kan utnyttjas i den nationella miljöövervakningen
1998:19 Skogsåldersorganisationens årssamtal 1998
1999:2 Nyckelbiotopsinventering inom större skogsbolag. En jämförelse mellan SVOs och bolagens inventeringsmetodik
2001:1 Skogsåldersorganisationens Årsamtal 2000
2001:2 Rekommendationer vid uttag av skogsväxthållning och kompensationsgödsling
2001:3 Kontrollinventering av nyckelbiotoper år 2000
2001:4 Åtgärden mot markförsurning och för ett uthålligt brukande av skogsmarken
2001:5 Miljöövervakning av Biologisk mångfald i Nyckelbiotoper
2001:6 Utvärdering av samråden 1998 Skogsbruk - rennäring
2002:1 Skogsåldersorganisationens utvärdering av skogspolitikens effekter - SUS 2001
2002:2 Skog för naturvårdsändamål – uppföljning av områdesskydd, frivilliga avsättningar, samt miljöhänsyn vid förebyggning avverkning
2003:1 Konsekvenser av ett förbud mot permethrinbehandling av skogsplantor
2003:2 Inventering av nyckelbiotoper - Resultat 2003
2006:1 Stormen 2005 - en skoglig analys
2007:1 Övervakning av insektsangrepp - Slutrapport från Skogsstyrelsens regeringssammanslagning
2007:2 Kvävegödsling av skogsmark
2007:3 Skogsstyrelsens inventering av nyckelbiotoper - Resultat till och med 2006
2007:4 Fördjupad utvärdering av Levande skogar
2008:1 Kontinuitetsskogar och hyggessfritt skogsbruk
Beställning av Rapporter och Meddelanden

Skogsstyrelsen,
Förlaget
551 83 Jönköping
Telefon: 036 – 35 93 40
vx 036 – 35 93 00
fax 036 – 19 06 22
e-post: forlaget@skogsstyrelsen.se
www.skogsstyrelsen.se

I Skogsstyrelsens författningssamling (SKSFS) publiceras myndighetens föreskrifter och allmänna råd. Föreskrifterna är av tvingande natur. De allmänna råden är generella rekommendationer som anger hur någon kan eller bör handla i visst hänseende.

I Skogsstyrelsens Meddelande-serie publiceras redogörelser, utredningar m.m. av officiell karaktär. Innehållet överensstämmer med myndighetens policy.

I Skogsstyrelsens Rapport-serie publiceras redogörelser och utredningar m.m. för vars innehåll författaren/författarna själva ansvarar. Skogsstyrelsen publicerar dessutom fortlöpande: Foldrar, broschyrer, böcker m.m. inom skilda skogliga ämnesområden.

Skogsstyrelsen är också utgivare av tidningen Skogseko.

Denna rapport utgör en sammanställning av de resultat som tagits fram i studier, både sådana som finansierats inom projektet och andra relevanta undersökningar, de erfarenheter som vunnits genom den praktiska spridningen samt de slutsatser som dragits under diskussioner med den expertgrupp som kopplades till projektet.